Cell transplantation and cardiac recovery

Myocardial regeneration from endogenous cardiac progenitor cells

Jianyi Jay Zhang, MD, PhD Professor of Medicine, Cardiology University of Minnesota Medical School

Project Overview

Xiong Q, et al. (2010) Stem Cells; unpublished data Zhang Lab

Human ESC-derived CVPCs consist of EC and SMC, and form tube-like structures synergically.

hESC-EC

hESC-EC

hESC-EC+SMC

CVPCs inhibited the apoptosis of HL-1 cells that is induced by serum free culture.

Viable cells Apoptotic cells

CVPCs inhibited the apoptosis of ischemic cardiomyocytes in vivo (TUNEL staining).

Fibrin patch provided better stem cell retention over time compared to injection method.

Fibrin patch-based delivery of CVPCs provided substantial cell engraftment.

CVPC patch transplantation efficiently prevented scar formation and resulted in better cardiac function outcome.

CVPC patch "recruited" endogenous ckit⁺ progenitor cells for repair.

CVPC patch "activated" the endogenous ckit⁺ progenitor cells for active proliferation and cardiac commitment.

Fibrin patch was utilized to deliver CVPCs onto swine hearts with ischemia/reperfusion damage.

Fibrin patch-based delivery of CVPCs provided substantial cell engraftment, recruited endogenous ckit⁺ cells and promoted revascularization.

Fibrin patch-based delivery of CVPCs attenuated cardiac hypertrophy.

CVPC patch transplantation resulted in better cardiac function outcome compared to control groups (MI and MI+P, p<0.05).

Infarcted (MI) heart

Patch only (MI+P)

CVPC treated (MI+P+C)

CVPC patch transplantation resulted in better cardiac function outcome compared to control groups (MI and MI+P, p<0.05).

CVPC patch transplantation improved the myocardial perfusion in the IZ and BZ regions as measured by MRI.

Perfusion MRI

Project Summary

Acknowledgements:

