Robotic LV Epicardial Lead Placement: Indications and Technique

Sandhya K. Balaram, M.D., Ph.D.

Division of Cardiothoracic Surgery St. Luke's-Roosevelt Hospital Center Assistant Professor of Clinical Surgery Columbia University College of Physicians and Surgeons

Cardiac Resynchronization Therapy

CRT improves functional status and cardiac performance in patients with CHF and intraventricular conduction delay:

- Ventricular function
- Exercise capacity
- Quality of life
- Mortality

Response rate ranges from 69-72%

Percutaneous Coronary Sinus Cannulation

Advantages

Local anesthesiaSame access as right-sided lead

Percutaneous Coronary Sinus Cannulation

Disadvantages

10-15% procedural failure rate
Limited by coronary venous anatomy
5-10% late failure rate
Site on LV is limited
Long fluoroscopy time

Surgical LV leads: Is there a need ?

- 2 million patients with NYHA class III-IV CHF
- 30-50% have widened QRS (600,000-1,000,000)
- CS failure rate of 15% (90,000-150,000)
- Lead dislodgement rate of 7% (42,000-70,000)

Alternative Approaches to Percutaneous LV Pacing

- Sternotomy
- Thoracotomy
- Mini-thoracotomy
- Thoracoscopy
- Robotic

Thoracotomy

- Most common incision used for CS lead failure
- Morbidity includes:
 - Postoperative pain
 - Respiratory complications
 - Atelectasis/pneumonia
 - Several days of recovery

Limited Thoracotomy/Sternotomy

Minimally invasive method
Difficult to access posterolateral wall
Ability to use screw in leads with minimal cardiac displacement

Thoracoscopy

Eliminates chest wall retraction, thereby decreasing postoperative pain and splinting Shortens postoperative recovery Technology support with screw in tools Good visualization Difficult to access entire heart, especially in the presence of cardiomegaly or adhesions

DaVinci[™] Robot

Robotic LV Epicardial Leads

Advantages

Direct placement on any portion of the LV
Minimally invasive
Site-directed approach

Robotic LV Epicardial Leads

Disadvantages

General anesthesiaSingle lung ventilation

Indications For Robotic LV Lead Placement

Inability to cannulate CS
Small CS venous tributaries
Prior perforation
Lead fracture or dislodgement
High pacing threshold
Primary implant

Technical Aspects of Robotic Lead Placement

Requires general anesthesia Selective single lung ventilation Preop pulmonary function tests Posterior approach Hold anticoagulation (coumadin) Lead surveillance similar to CS leads Back-up lead kept in device pocket

Operative Technique: The Posterior Approach

Operative Time for Robotic LV Lead Implantation

Types of Epicardial LV Leads

Steroid-eluting, sew-in leadsScrew in leads

Can Robotic Pacing Improve Clinical Outcomes of CRT?

Determine Site of Latest Activation

EKG Use of Pressure Volume Loops Tissue Doppler Imaging Tissue Strain Imaging Intraoperative Epicardial Site Testing Three-dimensional Mapping

Echocardiographic Mapping: Tissue Doppler Imaging

Asynchrony

Importance of Intraoperative Mapping

The anatomic landmark can vary from the site of latest activation in up to 37% of aptients

Anatomy alone can result in non-response in up to 33% of patients

Edgerton JR, Edgerton ZJ, Mack MJ, Hoffman S, Dewey TM, Herbert MA. Ventricular epicardial lead placement for resynchronization by determination of paced depolarization intervals: technique and rationale. Ann Thorac Surg. 2007 Jan;83(1):89-92

Optimal Pacing Site

54 patients, Thoracoscopy/lateral thoracotomy TSI to identify area of latest peak systolic velocity

Significant Improvement in reverse remodeling and systolic function

BEST CLINICAL AND HEMODYNAMIC BENEFIT CAME TROM THEOSE PATIENTS WHO HAD TSI TO IDENTIFY THE AREA OF LATEST PEAK SYSTOLIC VELOCITY

GRADED RESPONSE: Those patients whose LV lead was placed one segment away from the recommended area (site of maximal LV delay) had less remodeling and those >1 segment away showed <u>no</u> significant reverse remodeling

Murphy RT, Sigurdsson G, Mulamalla S, Agler D, Popovic ZB, Starling RC, Wilkoff BL, Thomas JD, Grimm RA. Tissue synchronization imaging and optimal left ventricular pacing site incardiac resynchronization therapy. *Am J Cardiol.* 2006 Jun 1;97(11):1615-21

Importance of LV mapping

Measured distance between the site of latest activation and that determined by flouroscopy was the **ONIY** independent predictor of improvement of LV volumes.

Site of latest strain activation demonstrates marked improvement in ejection fraction and a marked decrease in left ventricular end-systolic and end-diastolic volumes.

Becker M, Kramann R, Franke A, Breithardt OA, Heussen N, Knackstedt C,

Stellbrink C, Schauerte P, Kelm M, Hoffmann R. Impact of left ventricular lead position in cardiac resynchronization therapy on left ventricular remodelling. A circumferential strain analysis based on 2Dechocardiography. Eur Heart J. 2007

Site-Directed LV leads

Target zone for LV lead placement should correspond to the latest point of both electrical and mechanical activation.

Rovner A, de Las Fuentes L, Faddis MN, Gleva MJ, Davila-Roman VG, Waggoner AD. Relation of left ventricular lead placement in cardiac resynchronization therapy to left ventricular reverse remodeling and to diastolic dyssynchrony. Am J Cardiol. 2007 Jan 15;99(2):239-41. Epub 2006 Nov 21

Epicardial vs. Percutaneous Leads

No prospective randomized trials as yet

Mair et al report a retrospective comparison of

- 79 patients with CS lead insertion
- 16 patients with epicardial lead placement through limited thoracotomy

Results:

- 100% patient with epicardial leads had posterolateral placement vs 70% in transvenous group
- No statistically different length of stay
- Percutaneous leads had higher thresholds over 16 month follow up.

Mair H, Sachweh J, Meuris B et al. Surgical epicardial left ventricular lead versus coronary sinus lead placement in biventricular pacing. *Eur J Cardiothorac Surg* 2005; 27: 235–242.

Transvenous lead placement vs Lateral Thoracotomy

81 patients

Results:

Lower incidence of re-intervention for surgical leads Less clinical benefit and reverse remodeling for the 25 patients who had lateral thoracotomy Note: 44% of the LV leads in the surgical group were positioned ANTERIORLY as compared to the transvenous group (4.5%)

Posteriorly-positioned epicardial leads are a key component in improved clinical and physiologic outcomes.

Koos R, Sinha AM, Markus K, Breithardt OA, Mischke K, Zarse M, Schmid M, Autschbach R, Hanrath P, Stellbrink C. Comparison of left ventricular lead placement via the coronary venous approach versus lateral thoracotomy in patients receiving cardiac resynchronization therapy. Am J Cardiol. 2004 Jul 1;94(1):59-63.

St. Luke's-Roosevelt Hospital: Robotic-Assisted CRT Program

- 84 patients with CHF and widened QRS > 140 ms
- All patients underwent intraoperative electrophysiologic mapping to determine the area of the LV with latest electrical activation
- TDI used pre- and intra-operatively to assess resynchronization

Patient Characteristics N=84

Age 73
Inpatient 429
Ischemic CM 689
Idiopathic CM 329
Prior CABG 569
Multiple Re-op 179

73 ± 9 yrs (43-87) 42% 68% 32% 56%

Results

100% epicardial lead placement success
All patients extubated in the operating room
2% conversion to mini-thoracotomy
Mortality 0%
Morbidity 6%
Length of stay 2.1 ± 1.6 days

Complications

Pneumonia
Ischemic Colitis
Intercostal Neuropathy
Renal Insufficiency (transient)
LV lead failure (6 mos)

Results

	Baseline	6 mos post-op	р
LVEF	$11 \pm 6\%$	$23.4 \pm 13.6\%$	<0.001
LVEDD	$7.2 \pm 1.2 \text{ cm}$	$7.1 \pm 1.0 \text{ cm}$	NS
NYHA class	3.5 ± 0.5	1.8 ± 0.8	<0.001
QRS duration	184 ± 29 msec	151 ± 20 msec	< 0.01
	Response Rate:	85%	

Results-Lead Stability

 $F/U=25\pm 8$ months

	Threshold	Impedance
Intra-op	$1.0 \pm 0.5 \mathrm{~V}$	$1160 \pm 248 \ \Omega$
Post-op	$1.8 \pm 1.1 \mathrm{~V}$	$310 \pm 158 \ \Omega$
P value	NS	< 0.001

Summary

- Robotic LV lead implantation is safe and effective
- Excellent minimally invasive option for failed CS cannulation
- Optimal portion of myocardium can be targeted
- Posterior approach particularly useful for re-ops
- Epicardial leads are stable over time
- Role in primary implants awaits randomized trials