QT Variability: Risk Stratification and Drug Studies

Mark C. Haigney, MD Director of Cardiology Professor of Medicine F. Edward Hebert School of Medicine Bethesda, MD USA

No relationships to disclose

Analogies Between HF- and Drug-induced Proarrhythmia

- Drug-induced and congenital LQTS associated with excessive prolongation of action potential in midmyocardial M cells

 Sicouri S, Antzelevit C. Circ Res 1991
- Heart failure results in action potential prolongation in M cells and QT prolongation in ECG

– Akar F, Rosenbaum D. Circ Res 2003

Repolarization is prolonged and unstable in Heart Failure

Haigney, et al. JACC, 1998

Does repolarization instability contribute to the development of ventricular tachyarrhythmias?

T Wave Alternans: A special case of repolarization variability?

What about variability at non-alternans frequencies?

Repolarization Variability Precedes Ventricular Arrhythmias

- Holters from Electrophysiologic Study Versus Electrocardiographic Monitoring (ESVEM)
 - 42 subjects with sus@ined VT
- Increased variability at alternans and nonalternans frequency prior to VT

Changes in the spectral power of beat-to-beat oscillations in the mean amplitudes of successive T waves before the onset of VTA

Copyright ©2006 American Heart Association

American Heart Association

QT Variability Index

$QTVI = \frac{QTV}{log} (\frac{QTV}{mean} QT^2)$ (HRV/mean HR²)

QT Variability Normalized

 $QTVN-(QTV/mean QT^2)$

QTVI is increased in Ischemic and Non-ischemic DCM

Berger, et al. Circulation. 1997;96:1557-1565

QTVI and VT/VF in MADIT II

- Of 1,232 subjects, 1,197 with Holter
 310 initially excluded
 - 111 paced, 98 Afib, 76 noise
- Analysis attempted in 912 subjects
 - 95 rejected (Atrial fibrillation in 64)
 - 817 successfully analyzed
 - -476 ICDs (742 ICDs in the trial)
 - 22.5% had appropriate ICD therapy for VT/VF
 - Compared the top quartile for QTVI and QTVN

QTVI and Appropriate ICD Therapy

QTVN and Appropriate ICD Therapy

HRQ for QTVN Associated with VF

Haigney, Zareba, Gentlesk et al. *JACC* 2004; 44(7): 1481-1487.

Multivariate Cox Analysis

- significant independent increase in risk of appropriate therapy for VT/VF after adjustment for relevant clinical covariates (race, NYHA class, time after myocardial infarction)
 - HR for QTVN 2.18, CI: 1.34 to 3.55, p=0.002;
 - HR for QTVI 1.80, CI: 1.09-2.95, p=0.021
 - HR for EF<25 1.21 CI 0.77-1.87, (p=0.41)
 - HR for EPS (n= 593) 1.26 CI 1.26 CI 0.86-1.86 (p=0.24)

QTVN and QTVI in Non-ischemic DCM

QTVN

QTVI

Piccirillo et al. EHJ 2007

24-hour VR (SDQT/SDNN) independent predictor of total, cardiac, and sudden death mortality post MI

Jensen et al. Heart Rhythm 2005

QT Variability is significantly increased in LQTS

Perkiomaki et al. JCE 2002

Repolarization Variability as a Predictor of Torsades de Pointes

- Evidence of pro-arrhythmic tendencies the leading cause of new drug withdrawal
- QT prolongation only modest predictor of TdP
- Presence or induction of repolarization instability may enhance predictive power

T wave Variability Prior to TdP

Figure 2. ECG registration of T wave alternans at baseline before the almokalant infusion in TdP patient 3 (see Table II). The registration shows shifting polarity of the T waves, most visible in leads V_3 - V_5 .

Houltz et al. PACE 1998

Instability, Poincare plot, and TdP

Hondeghem, L. M. et al. Circulation 2001;103:2004-2013

Induction of Short-term Variability in MAP Predicts TdP

Thomsen et al Cardiovascular Res 2007

QTVI and Cocaine

Haigney et al., JCE 2006

Table 2

Electrophysiological and hemodynamic responses to HMR1556 and HMR1556 plus isoproterenol in TdP-inducible dogs

	Baseline	HMR1556	HMR1556 + isoproterenol
Heart rate, bpm	78 ± 4	74±6	$140 \pm 7^{*^{\dagger}}$
QT, ms	249 ± 6	$316 \pm 11^*$	329±13*
QT _c VdW, ms	265 ± 6	$331 \pm 10^{*}$	$373 \pm 13^{*\dagger}$
LV MAPD ₉₀ , ms	24 ± 8	289±9*	292±13*
RV MAPD ₉₀ , ms	211 ± 7	$251 \pm 11^*$	244±11*
LV-RVMAPD ₉₀ , ms	14 ± 2	26±4*	$38 \pm 7^*$
LV MAPD _{endo-epi} , ms	29 ± 5	$62 \pm 11*$	$74 \pm 18*$
T _{peak} -T _{end} interval, ms	33 ± 4	56±6*	$74 \pm 10^{*}$
LV BVR, ms	1.7 ± 0.2	2.2 ± 0.7	4.9±0.8*†
QT BVR, ms	1.4 ± 0.3	1.9 ± 0.4	$4.9 \pm 0.9^{*\dagger}$
QT STI, ms	1.4 ± 0.5	1.9 ± 0.4	4.6±1.3* [†]

Gallacher, et al. Cardiovasc Res, ePub June 2007

Conclusions

- Variability in repolarization (alternans and nonalternans) is associated with increased incidence of VT/VF, SCD, and TdP
- The utility of QT (or T wave variability) in assessing the risk of dig-induced proarrhythmia has not been adequately tested in humans
- The ideal method for measuring *in vivo* repolarization instability unclear
 - Combine TWA and non-alternans methods?
 - T wave amplitude versus QT duration?