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Abstract 
 Cardiac resynchronization therapy with biventricular pacing improves quality of life and 

survival in individuals with systolic heart failure. A significant issue with cardiac resynchronization 

therapy at the present time is the clear identification of responders versus non-responders. Various 

clinical, electrocardiographic and echocardiographic predictors of response have been described. 

Most clinical trials have utilized QRS widening as marker of  ventricular dyssynchrony. However,  

20 – 30% of patients satisfying these criteria do not respond well to resynchronization. Newer 

criteria for detection of ventricular dyssynchrony are emerging. Echocardiographic evidence of 

ventricular dyssynchrony has been found in those with normal QRS duration. Standard deviation of 

time to peak myocardial velocity measured by tissue Doppler imaging is a promising parameter 

which predicts reverse remodeling after resynchronization. Non-contact mapping and magnetic 

resonance imaging have been used in identifying optimal site for left ventricular pacing. Newer 

magnetic resonance imaging techniques are being developed for the evaluation of ventricular 

dyssynchrony. 
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Introduction 
 Several randomized trials [1] [2] [3] [4] [5] and meta-analyses [6] [7] have shown that 

cardiac resynchronization therapy (CRT) with biventricular pacing provides symptomatic relief in 

patients with heart failure refractory to pharmacological therapy. A systematic review including a 

meta-analysis of nine trials concluded that CRT also reduces all-cause mortality [7]. The recently 

published Cardiac Resynchronization - Heart Failure (CARE-HF) trial has also confirmed the 

mortality benefit of CRT [8]. All clinical trials to date, have used prolonged QRS duration, 120 

milliseconds or longer, as entry criteria. However, these studies have documented that about 30% 

of patients do not improve as a result of CRT [9].  It is also possible that selection of left ventricular 

pacing sites may predict response rates. Since CRT is an expensive treatment modality, beyond 

the reach of most of the world’s population, accurate methods of identifying those who will respond 

to it are essential. This review aims at evaluating the current evidence to support the various 

parameters useful in identifying the potential responders.  

 Various methods of predicting the response to CRT has been investigated. 

Electrocardiography [10], non-contact mapping [12], echocardiography [11], radionuclide 

angioscintigraphy and magnetic resonance imaging [13] have been utilised for identifying patients 

who are likely to respond to CRT as well for selection of optimal pacing site.  

 

Clinical Selection Criteria 
  Patients in NYHA Class III – IV heart failure, not responding to optimal pharmacological 

therapy are generally considered for CRT. Response to CRT is similar in those with ischemic 

cardiomyopathy and idiopathic dilated cardiomyopathy. The percentages of responders with 

improvement in NYHA class of one or more grade is comparable in both groups - 65% vs 71% 

[14].  

 

Electrocardiographic Parameters 
 
QRS Duration 

The 12 lead ECG has been the mainstay of patient selection for CRT. A broad QRS 

complex indicates electrical delay that may correlate with the mechanical dyssynchrony and 

reversible by CRT. QRS duration of more than 120 milliseconds (ms) is the criterion that is widely 

used in clinical trials [7] and the basal QRS duration significantly correlates with the improvement 

in left ventricular systolic function [15]. There is a correlation between the QRS width and the 

degree of dyssynchrony. Severe dyssynchrony as evidenced by septal to lateral wall delay of more 

than 60 ms was observed in 27% of patients with narrow QRS complex (<120 ms), 60% with 

intermediate QRS duration (120 – 150 ms), and 70% with wide QRS complex (>150 ms) [16]. 
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Responders exhibit a significant reduction in QRS duration after CRT. More than 50 ms reduction 

in QRS duration is highly specific (88%) but not sensitive (18%) to predict response to CRT [17]. 

This conventional wisdom of choosing only patients with wide QRS has been questioned recently. 

About one fourth to half of patients with heart failure and “normal” QRS duration (< 120 ms) have 

intraventricular dyssynchrony [18] [15] and may improve with CRT [19].  

 

Bundle Branch Block Pattern 
 
Left Bundle Branch Block 

Left bundle branch block (LBBB) is associated with dyssynchrony of contraction between 

the septum and lateral wall of the left ventricle. The contraction of interventricular septum is early 

relative to the delayed contraction of the posterolateral free wall. Failure of simultaneous 

contraction of opposing LV walls reduces peak systolic pressure. Twenty to 30% of patients with 

symptomatic heart failure have ECG evidence of LBBB [11]. 

 

Right Bundle Branch Block 

 Patients with RBBB have also been shown to have significant improvement in functional 

class, exercise time and peak oxygen consumption with CRT. But most patients with RBBB (82%) 

also had either left anterior fascicular block or left posterior fascicular block. Hence the 

improvement may be due to concomitant left-sided conduction abnormalities [20]. 

 

Non-Contact Left Ventricular Endocardial Mapping 
 Non-contact mapping can identify regions of slow conduction within the left ventricle. 

Pacing outside these slow conduction areas increases cardiac output and dt/dtmax significantly. In 

patients in whom leads have already been implanted in these slow conduction areas, better results 

can be obtained by pacing the left ventricle 32 ms before the right ventricle [21].  

 

Radionuclide Angioscintigraphy 
 Basal ventricular asynchrony and resynchronization by CRT can be measured by 

radionuclide angioscintigraphy [22]. Both interventricular and apicobasal dyssynchrony can be 

calculated. Patients with large electromechanical dyssynchrony benefit most from CRT. A 

significant interventricular dyssynchrony (> 60 ms) has a positive predictive value of 83% to predict 

an improvement of LVEF [22].  

 

 Two novel parameters which can measured by equilibrium radionuclide angiography are 

synchrony (S) and entropy (E).  Complete synchrony is indicated by an S value of 1 and its 
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absence by 0. Entropy measures the disorder in the region of interest, a value of 1 denotes 

random contraction and 0 full synchrony. Phase angle (O) which represents the timing of regional 

contraction has also been used in the evaluation of synchrony. Phase angle is calculated from 

gated blood pool time versus radioactivity curve. Standard deviation of phase angle used as a 

marker of synchrony has been shown to indicate the beneficial effects of CRT. It has strong 

prognostic value in patients with non-ischemic dilated cardiomyopathy, which is superior to LVEF 

[23].  

 
Echocardiography 

Atrioventricular, intraventricular and interventricular dyssynchrony can be measured by 

echocardiography. Left ventricular filling time will be reduced in the presence of atrioventricular 

dyssynchrony. It is measured from the onset of the E wave to the end of the A wave on mitral 

Doppler and if less than 40% of the cardiac cycle is indicative of dyssynchrony [11]. A prolonged 

aortic pre-ejection time (> 140 ms) is a marker of intraventricular dyssynchrony. It is measured as 

the time from the onset of QRS to the beginning of flow in the aortic Doppler. Pulmonary pre-

ejection time is measured on similar lines and a difference of more than 40 ms between aortic and 

pulmonary pre-ejection periods indicates interventricular dyssynchrony [11]. M mode 

echocardiography has been used to calculate the septal-to-posterior wall motion delay measured 

as the time difference between the maximum displacements of septum and posterior wall. A delay 

of > 130 ms has been shown to predict reverse remodeling after CRT with a positive predictive 

value of 80% [24]. Echocardiography may also facilitate the placement of the left ventricular lead in 

an optimal position based on identification of dysynchronus segments. 

 

Tissue Doppler Imaging 
 Tissue Doppler Imaging (TDI) can used to assess the regional electromechanical delays. 

This can be measured from the onset of QRS to the start of systolic shortening (S wave). 

Difference between the regions of earliest and latest regions of contraction gives the dispersion of 

intraventricular contraction. Dispersion of more than 40–50 ms may provide an index of 

intraventricular dyssynchrony. The extent of the LV base displaying delayed longitudinal 

contraction, as detected by TDI before CRT, predicts long-term efficacy [25]. The greatest 

difference in time to peak velocity between any of 12 left ventricular regions also indicates 

intraventricular dyssynchrony.  Standard deviation of time to peak myocardial velocity from 6-basal 

and 6-mid left ventricular segments has been shown to be a powerful predictor of reverse 

remodeling after CRT [26].  
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Strain Rate Imaging 
 Strain Rate Imaging (SRI) data is calculated from TDI data.  The strain rate (velocity of 

deformation) can be estimated by calculating the velocity gradient between two points with the 

equation: strain rate = (v[r] - v[r + ∆r])/ ∆r [26]. It is  less dependent on image quality and less 

subjective than visual assessment of endocardial border motion. Tracking of myocardial 

deformation with this technique has a higher time resolution than magnetic resonance imaging. 

Hence it can document transient changes in deformation patterns such as post-systolic shortening 

[27]. CRT can reverse abnormal myocardial strain distribution. Septal-lateral wall difference in mid-

segmental peak strain has been reversed by CRT [28]. 

 
Post Systolic Shortening 
 Techniques of TDI and SRI are combined to look for post systolic shortening (PSS) or 

delayed longitudinal contraction. It is an early diastolic contraction after the closure of aortic valve 

and is an indirect marker of systolic asynchrony, though it may rarely occur in normal individuals 

[29].  

 

Contrast Variability Imaging 
 Contrast variability imaging has been used to quantify cardiac dyssynchrony to assess 

resynchronization achieved by CRT. In this technique, echo-contrast is infused slowly and gated 

images are acquired before and during contrast appearance. Quantitative assessment of 

resynchronization similar to that obtained by tagged magnetic resonance imaging (MRI) is feasible 

[30].  

 
Three – dimensional Echocardiography 
 Three-dimensional echocardiography allows rapid and accurate evaluation of LV volumes 

and performance. Coupled with appropriate analytic software, this technique allows the detection 

of delayed contraction of LV segments and can be used to select the optimal pacing site during 

CRT [31]. Real-time three-dimensional echocardiography has been used calculate systolic 

dyssynchrony index (SDI), derived from the dispersion of time to minimum regional volume for all 

16 LV segments.  SDI decreases significantly in those who respond to CRT with reverse 

remodeling. SDI is low in healthy individuals/  patients with normal LV function and increases with 

worsening LV function regardless of the QRS duration [32]. 
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Magnetic Resonance Imaging 
 Magnetic resonance (MR) tagging is a type of labeling of the myocardium by manipulating 

the magnetization of the tissue. These tags appear as hypointense stripes and move with the 

tagged segment of myocardium [33]. Analysis of these tags can be used to calculate the local 

myocardial strain. Harmonic phase analysis (HARP) is a method of rapidly analyzing MR tagged 

data. HARP method has been used in analyzing dyssynchrony in ischemic cardiomyopathy. Strain-

encoded (SENC) MRI is a new method for direct imaging of regional strain. [34]. MRI-guided CRT 

has been performed with a left ventricular epicardial lead at the lateral region where a 4-mm 

thickening during systole had been proven [13]. 

 

Conclusion: 
Various new imaging techniques have been tested as a measure of cardiac mechanical dys-

synhcrony. However, only criteria based on the surface electrocardiogram and echocardiography 

have been tested for outcome with cardiac re-synchronization therapy. At the present time, a wide 

QRS in excess of 120 msec with or without echocardiographic dys-synchrony appears to offer the 

best prediction in terms of response. Clinical trials are in progress examining the role of CRT in 

imaging based diagnosis of dys-synchrony in patients with narrow QRS.   
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