
 

www.hf-symposium.org 
 

Cardiac sympathetic nerve terminal function in 
congestive heart failure 
Chang-seng Liang, MD, PhD 

 
Introduction 

It has been long recognized that cardiac norepinephrine (NE) is depleted in patients with 

congestive heart failure (1, 2).  Early studies have shown that NE depletion is associated with 

increased release of cardiac NE secondary to heightened sympathetic nervous activity and 

decreased synthesis of NE in patients with congestive heart failure (2-5).   It was thought initially 

that the heightened sympathetic activity was an important adaptive mechanism to support the 

failing myocardium, and that the subsequent depletion of cardiac NE stores contributed to the 

progressive deterioration of cardiac function, and the decreased myocardial contractility seen in 

chronic heart failure.  However, it was later discovered that the intrinsic contractility of heart muscle 

remains normal after depletion of myocardial NE by reserpine treatment or cardiac denervation (6).  

Thus, normal cardiac stores of NE are not essential for maintaining the intrinsic myocardial 

contractility, and NE depletion does not account for the myocardial depression in heart failure.  

However, as overwhelming majority of NE is stored in the intraneuronal storage vesicles, tissue 

content of NE does not accurately reflect myocardial interstitial NE concentration which is elevated 

in heart failure.  Recent studies from my laboratories and others have provided new insight on 

cardiac sympathetic nerve terminal function in heart failure, and suggest that abnormal NE uptake 

in the sympathetic nerve ending plays an important pathophysiologic role in dilated 

cardiomyopathy.  The findings further indicate that the change in NE uptake in chronic heart failure 

is maladaptive, and may be a novel therapeutic target in the treatment of congestive heart failure. 

       

Reduction of NE Uptake Transporter in Heart Failure 

Myocardial uptake of NE is known to be reduced in the failing heart.  In experimental heart failure 

produced by aortic constriction, Spann et al. (7) showed that intravenous infusion of NE resulted in 

a much smaller increase in cardiac NE in guinea pigs with heart failure than normal animals, but 

the increase of NE in the kidneys did not differ between the two groups of animals.  They attributed 

the organ-specific difference of tissue NE uptake to a diminished number of sympathetic nerves 

and/or binding sites in the failing heart.  We now know that the primary defect is caused by 

reduction of neuronal NE transporter (NET) density at the sympathetic nerve endings (8).  Since 

the NE uptake mechanism is responsible for a rapid removal of interstitial NE after sympathetic 

release of NE, this defect of NE uptake has been used to explain, at least in part, the selective 
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increase of cardiac washout of NE.  The amount of NE in the myocardial interstitial space is also 

expected to increase, and causes greater actions on the postsynaptic adrenergic receptors.  NET, 

a 617 amino acid protein, comprises of 12 transmembrane domains at the sympathetic nerve 

endings (9).  It is a member of the Na+ and Cl- dependent family of neurotransmitter transporters.  

It takes up NE from the interstitial space back to the adrenergic nerve terminals with the 

stoichiometric exchange of Na+ and Cl- against their electrochemical gradients (10). 

 

My laboratories have studied the pre- and post-synpatic function of the cardiac sympathetic nerves 

for many years.  Fan in my group (11) was the first to demonstrate a chamber-specific reduction of 

myocardial ß-receptors in the failing right ventricle of dogs with right-heart failure produced by 

tricuspid avulsion and progressive pulmonary artery constriction.  Chamber-specific reduction of 

myocardial ß-receptor density was later confirmed in the failing human right ventricles associated 

with primary pulmonary hypertension (12).  The decrease of myocardial ß-adrenoceptor density in 

heart failure animals is linked to reduced NE uptake activity, NET density (13, 14), and increased 

interstitial NE (15).  In contrast, the contralateral nonfailing left ventricle is relatively spared without 

reductions of myocardial ß-receptor or NET density.  Nor did NET change in the kidneys of the 

heart failure animals.  These findings suggest that the change in NET is produced by a local 

mechanism, and is organ- and chamber-specific, occurring only in the failing ventricle. 

 

The functional importance of the NE uptake site was further studied in rabbits at various time 

intervals after the start of rapid ventricular pacing (16). We found that rapid ventricular pacing 

caused early sympathetic nervous system activation, followed in sequence by reduced myocardial 

NE uptake, loss of neuronal NE, and down-regulation of myocardial ß-adrenoceptors.  However, 

there was no significant reduction of protein gene product 9.5, a panneuronal marker, suggesting 

that the anatomic integrity of the cardiac sympathetic nerves probably is intact, and the changes of 

sympathetic neurotransmitters within the nerve endings are caused by functional abnormalities that 

are potentially reversible with either effective therapy or removal of a primary insult that causes 

heart failure.  The interdependence of increased sympathetic stimulation, decreased cardiac NE 

uptake, and myocardial ß-adrenoceptor down-regulation is further borne out by a study by 

Leineweber et al. (17), who found that neurohumoral activation is essential for the reduction of 

myocardial ß-receptors in the hypertrophied right ventricle produced by monocrotaline, which, 

similar to our earlier studies in right-heart failure, is characterized by a chamber-specific reduction 

of myocardial NE uptake sites (18). 
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The physiological significance of the NE reuptake mechanism in the regulation of myocardial 

ß-receptor density and post-synaptic ß-adrenergic inotropic responsiveness was further studied in 

heart failure animals treated with desipramine (19) and selegiline (20).  Desipramine is a NET 

inhibitor.  It increased myocardial interstitial NE in heart failure, and caused further reductions of 

myocardial ß-adrenoceptor density and ß-adrenergic subsensitivity. In contrast, selegiline, which is 

a central  α2-agonist with a neuroprotective effect, attenuated the increase in plasma NE and the 

decrease of myocardial ß-receptor density and improved cardiac mechanical function in 

pacing-induced cardiomyopathy.  These findings support the concept that interstitial NE is a 

modifiable variable, important in the mediation of agonist-induced post-synaptic events seen in 

heart failure. 

 

To study the mechanism responsible for the NE uptake inhibition in heart failure, experiments have 

been conducted in my laboratories to show that the reductions of cardiac sympathetic transmitters 

and NET can be induced by exogenous NE (21, 22), and inhibited by desipramine (19, 23) and 

antioxidants (22, 24) in intact animals.  Studies also have been conducted in cultured rat 

neuroblastoma cell (PC) 12 cells, showing that NE reduces NE uptake activity and NET protein in a 

dose-dependent fashion (25), most likely due to endoplasmic reticulum stress and reduced 

glycolyation and trafficking of NET to the cell membrane (26).  There is also evidence that this 

effect of NE is associated with an increase in reactive oxygen species, and can be attenuated by 

the free-radical scavenger mannitol, or antioxidant enzymes superoxide dismutase and catalase.  

The findings suggest that the cardiac sympathetic nerve terminal dysfunction is probably caused 

by increased interstitial NE in heart failure, and the neuronal damaging effect of NE involves the 

uptake of NE or its oxidative metabolites into the sympathetic nerve endings. 

 

Myocardial MIBG Scintigraphy and Its Clinical Utility in Heart Failure 

Recently, radio-iodinated metaiodobenzylguanidine (123I-MIBG), a structural analogue of NE, has 

been used to study the integrity and function of the cardiac sympathetic nervous system.  MIBG 

shares the same reuptake mechanism and storage site with NE.  Thus, its uptake into the 

myocardium reflects both the distribution of cardiac sympathetic innervation and the extent of 

neuronal NE uptake activity.  The failing heart is characterized by reduced distribution and washout 

of MIBG (27).  Abnormal MIBG uptake also correlates with reduced myocardial contractile reserve 

in patients with dilated cardiomyopathy (28).  Similarly, c-11-HED, a PET-based NE analog, is 

significantly correlated to the NET density, and has been used to demonstrate regional variations 

of NE content in cardiomyopathy (29).  Thus, the MIBG and HED-PET patterns can be used as a 

noninvasive means to investigate the changes of cardiac sympathetic innervation in the hearts of 
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cardiomyopathic patients.  Studies have now shown that cardiac sympathetic nerve innervation as 

demonstrated by MIBG scintigraphy is an independent predictor for adverse clinical outcome 

including mortality in patients with heart failure (30).  Improvements in MIBG patterns also have 

been shown to occur in patients who respond favorably to carvedilol (31), metoprolol (32), 

spironolactone (33), and enalapril (34).  In contrast, bucindolol therapy, which showed only 

marginal survival benefits (35), did not improve the sympathetic nerve function as measured by 

MIBG (36).   

 

Therapeutic Implications 

Long-term ß-blocker therapy is now widely accepted as a pillar in the treatment of systolic heart 

failure.   Effective utilization of the ß-receptor blockers can not only improve left ventricular systolic 

function but also increase survival in patients with chronic heart failure secondary to left ventricular 

systolic dysfunction (37-40). Given the overwhelming success of the ß-adrenoceptor blocker 

therapy, attempts have been made to determine if similar or greater beneficial effects can be 

derived from potent sympatholytic agents such as moxonidine which has been shown to decrease 

peripheral sympathetic outflow and circulating plasma NE by stimulating the brain stem 

imidazoline-1 receptor (41).  Unfortunately, despite early enthusiasm with the centrally acting 

sympatholytic agents (42, 43), moxonidine therapy was considered detrimental, because it tended 

to increase mortality and morbidity in chronic systolic heart failure in a large clinical trial (44).  

Thus, the sympathetic nervous system activation can be both adaptive and maladaptive, 

depending on the degree of basal sympathetic activation and the extent of sympatholysis or ß-

receptor blockade.  Furthermore, generalized sympathetic nervous system inhibition probably has 

limited therapeutic utility, and localized adrenergic inhibition at the cardiac receptor level is the 

preferred mode of therapy heart failure. 

 

Alternatively, results of several recent studies suggest that without directly affecting central 

sympathetic drive, cardiac function in heart failure may be modified by agents or interventions that 

upregulate the neuronal NET in the myocardium.  Kreusser et al. (45) reported that injection of 

nerve growth factor into stellate ganglia of rats with heart failure produced by transverse aortic 

constriction improved NE uptake, repleted cardiac NE stores, and increased left ventricular 

fractional shortening.  The number of cardiac sympathetic nerves, however, was unaffected.  In a 

separate study (46), adenoviral gene transfer was used to overexpress NET in the myocardium of 

rabbits with pacing-induced cardiomyopathy.  This resulted in increased NE uptake capacity and 

reversal of ß-receptor downregulation in the cardiac tissue.  Local overexpression of cardiac NET 

also improved the systolic function and contractile reserve of the cardiomyopathic hearts.   These 
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findings not only confirm the importance of NET in the initiation or progression of cardiomyopathy, 

but also suggest that cardiac NET may be a novel therapeutic target in the treatment of congestive 

heart failure.  Future research should be directed to development of pharmacological agents or 

interventions that reduce the cardiac noradrenergic drive while preserving the integrity and NE 

reuptake function of the sympathetic nerve terminals. 
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