Novel Antiplatelet Agents

Dominick J. Angiolillo, MD, PhD, FACC, FESC
Director of Cardiovascular Research
Assistant Professor of Medicine
How did we get here?...

Modified from Michel Bertrand
Ticlopidine during PCI with use of Coronary Stents

- Bertrand et al, *Circulation* 1998
The Thienopyridine Family

Ticlopidine

(1st generation)

- P2Y₁₂ ADP receptor antagonism: antithrombotic treatment of choice for coronary stenting
- Side effects: neutropenia, thrombocytopenia, rash, diarrhea, etc
- Delayed time frame to achieve full antiplatelet effects

Solution to these problems:

Clopidogrel

(2nd generation)

- Better Safety profile - Fewer side effects
- Rapid onset of action with a loading dose
- Better clinical outcomes
 (Bhatt DL et al. J Am Coll Cardiol 2002; 39: 9–14.).
The Thienopyridine Family

1) Irreversible platelet inhibitor
2) Interindividual response variability

- Better Safety profile - Fewer side effects
- Rapid onset of action with a loading dose of 300 mg
- Better clinical outcomes

Clopidogrel
(2nd generation)

1) Irreversible platelet inhibitor
2) Interindividual response variability

- bleeding risk in CABG
- full antiplatelet effects not always so rapid
- level of inhibition not always so high
- clopidogrel resistance
Individual Response Variability to Dual Antiplatelet Therapy in the *Steady State Phase* of Treatment

Adapted from Angiolillo DJ et al. *Am J Cardiol.* 2006;97:38-43.
Clinical Relevance of Clopidogrel Non-responsiveness

Post-Stent Ischemic Events and Periprocedural Infarction

<table>
<thead>
<tr>
<th>N</th>
<th>Functional Parameter</th>
<th>Clinical Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matezky et al. Circulation 2004</td>
<td>60 ↑ platelet aggregation (4th quartile)</td>
<td>Post-primary PCI ischemic events (6 months)</td>
</tr>
<tr>
<td>Gurbel et al. JACC 2005</td>
<td>192 ↑ periprocedural platelet aggregation</td>
<td>Post-PCI ischemic events (6 months)</td>
</tr>
<tr>
<td>Gurbel et al. Circulation 2005</td>
<td>120 ↑ periprocedural platelet aggregation</td>
<td>Myonecrosis and inflammation marker release</td>
</tr>
<tr>
<td>Cuisset et al. J Thromb Haemost 2006</td>
<td>106 ↑ platelet aggregation</td>
<td>Post-PCI ischemic events (30 days)</td>
</tr>
<tr>
<td>Lev et al. JACC 2006</td>
<td>120 ↑ clopidogrel/aspirin-resistant patients</td>
<td>Post PCI-myonecrosis</td>
</tr>
<tr>
<td>Cuisset et al. JACC 2006</td>
<td>292 ↑ platelet aggregation</td>
<td>Post-PCI ischemic events (30 days)</td>
</tr>
<tr>
<td>Hochozler et al. JACC 2006</td>
<td>802 ↑ platelet aggregation (3rd & 4th quartiles)</td>
<td>Post-PCI ischemic events (30 days)</td>
</tr>
<tr>
<td>Geisler et al. Eur Heart J 2006</td>
<td>379 ↓ platelet inhibition</td>
<td>Post-PCI ischemic events (3 months)</td>
</tr>
<tr>
<td>Bliden et al. JACC 2007</td>
<td>100 ↑ platelet aggregation</td>
<td>Post-PCI ischemic events (12 months)</td>
</tr>
<tr>
<td>Angiolillo et al. JACC 2007</td>
<td>173 ↑ platelet aggregation (4th quartile)</td>
<td>Ischemic events (24 months)</td>
</tr>
</tbody>
</table>

adapted from Angiolillo DJ et al. Am J Cardiov Drugs. 2007.
Clinical Relevance of Clopidogrel Non-responsiveness

Stent Thrombosis

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Functional Parameter</th>
<th>Clinical Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mueller et al. Thromb Haemost 2003</td>
<td>105</td>
<td>↓ inhibition of platelet aggregation</td>
<td>Stent thrombosis</td>
</tr>
<tr>
<td>Barragan et al. CCI 2003</td>
<td>36</td>
<td>↑ P2Y₁₂ reactivity ratio (VASP-levels)</td>
<td>Stent thrombosis</td>
</tr>
<tr>
<td>Gurbel et al. JACC 2005</td>
<td>120</td>
<td>↑ P2Y₁₂ reactivity ratio; ↑ platelet aggregation; ↑ stimulated GPIIb/IIIa expression</td>
<td>Stent thrombosis</td>
</tr>
<tr>
<td>Ajzenberg et al. JACC 2005</td>
<td>49</td>
<td>↑ shear-induced platelet aggregation</td>
<td>Stent thrombosis</td>
</tr>
<tr>
<td>Buonamici et al JACC 2007</td>
<td>804</td>
<td>↑ platelet aggregation</td>
<td>Stent thrombosis</td>
</tr>
</tbody>
</table>

adapted from Angiolillo DJ et al. Am J Cardiov Drugs. 2007.
Ideal ADP P2Y$_{12}$ receptor antagonist

- Rapid onset
- High level of inhibition
- No resistance
- Reversible
Novel ADP P2Y$_{12}$ receptor antagonist

Prasugrel

AZD6140

Cangrelor
Novel ADP P2Y$_{12}$ receptor antagonist

- Prasugrel
- AZD6140
- Cangrelor
The Thienopyridine Family

Ticlopidine
(1st generation)

Clopidogrel
(2nd generation)

Prasugrel (CS-747) (LY640315)
(3rd generation)
Active Metabolite Formation

Active Metabolite

Pro-drug

Pre-hepatic metabolism
Esterases in blood (Small Intestine)

Hepatic Metabolism
Cytochrome P450

Clopidogrel

85% Inactive Metabolites
Esterases in blood

Active Metabolite

Prasugrel

Active Metabolite
Healthy volunteer crossover study
IPA (20 μM ADP) at 24 hours

Brandt J et al. AHJ 2006

Response to clopidogrel
300 mg

Response to prasugrel
60 mg

Inhibition of platelet aggregation (%)

N=64
Prasugrel vs. Clopidogrel: Stable CAD

Inhibition of Platelet Aggregation (28 days; 20 \(\mu \text{M ADP} \))

- **Clopidogrel 300/75**
- **Prasugrel 60/15**
- **Prasugrel 60/10**
- **Prasugrel 40/7.5**
- **Prasugrel 40/5**
- **Clopidogrel 300/75**

IPA (%; mean adjusted)

25% IPA

Jernberg T et al. Eur Heart J 2006; 27: 1166-73.
STUDY DESIGN

PCI with stenting (N=900)

Study Drug in lab; Stratify for GP IIb/IIIa

PRASUGREL
LD 40 mg
MD 7.5 mg
N=200

PRASUGREL
LD 60 mg
MD 10 mg
N=200

PRASUGREL
LD 60 mg
MD 15 mg
N=250

CLOPIDOGREL
LD 300 mg
MD 75 mg
N=250

Maintenance Rx for 30 days

1° endpoint: Significant (non-CABG) bleeding through 30 D

2° endpoints: MACE through 30 D, Major Bleeding, Component Clinical Endpoints

1° EP: Significant Non-CABG Bleeding 30 D

Clop. vs Prasugrel
- P = 0.59

Dose Ranging
- P = NS

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Prasugrel LD/MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clop R/N</td>
<td>3/254</td>
</tr>
<tr>
<td>Pras R/N</td>
<td>11/650</td>
</tr>
<tr>
<td>40/7.5</td>
<td>1.5%</td>
</tr>
<tr>
<td>60/10</td>
<td>2.0%</td>
</tr>
<tr>
<td>60/15</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

MACE: Time to Event
Death, MI, CTVT, Stroke, and Recurrent Ischemia

Kaplan-Meier Estimate

- **CLOPIDOGREL**: 9.4%
- **PRASUGREL**: 7.2%

RR = 0.77 [0.5, 1.2]

p = 0.26

Time since PCI (days)

Study Design

ACS (STEMI or UA/NSTEMI) & Planned PCI

ASA

Double-blind

N= 13,600

CLOPIDOGREL
300 mg LD/ 75 mg MD

PRASUGREL
60 mg LD/ 10 mg MD

1° endpoint: CV death, MI, Stroke
2° endpoints: CV death, MI, Stroke, Rehosp-Rec Isch
CV death, MI, UTVR

Stent Thrombosis (ARC definite/prob.)

Safety endpoints: TIMI major bleeds, Life-threatening bleeds

Key Substudies: Pharmacokinetic, Genomic

Median duration of therapy - 12 months
Primary Endpoint CV Death, MI, Stroke

- **Clopidogrel**
 - HR 0.80
 - P = 0.0003
 - 12.1 (781)

- **Prasugrel**
 - HR 0.77
 - P = 0.0001
 - 9.9 (643)

- **HR 0.81**
 - (0.73-0.90)
 - P = 0.0004
 - NNT = 46

- ITT = 13,608
- LTFU = 14 (0.1%)

Wiviott SD et al. NEJM 2007
Timing of Benefit (Landmark Analysis)

Wiviott SD et al. NEJM 2007
Stent Thrombosis (ARC Definite + Probable)

Any Stent at Index PCI
N= 12,844

- Clopidogrel
 - 2.4 (142)
 - HR 0.48
 - P <0.0001
 - NNT= 77

- Prasugrel
 - 1.1 (68)
 - NNT= 77

Wiviott SD et al. NEJM 2007
Balance of Efficacy and Safety

- **CV Death / MI / Stroke**
 - **Prasugrel**: HR 0.81 (0.73-0.90), P=0.0004
 - **Clopidogrel**: HR 1.32 (1.03-1.68), P=0.03
 - **NNT = 46**

- **TIMI Major NonCABG Bleeds**
 - **Prasugrel**: ↓ 35 events
 - **Clopidogrel**: ↑ 138 events
 - **NNH = 167**

Wiviott SD et al. NEJM 2007
Bleeding Events
Safety Cohort
(N=13,457)

TIMI Major Bleeds

- Clopidogrel: ARD 0.6%
 - HR 1.32
 - P=0.03
 - NNH=167

- Prasugrel: ARD 0.5%
 - HR 1.52
 - P=0.01

Life Threatening

- Clopidogrel: ARD 0.2%
 - P=0.03

- Prasugrel: ARD 2.4%

Nonfatal

- Clopidogrel: ARD 0.1%
 - P=0.23

- Prasugrel: ARD 0.9%
 - P=0.002

Fatal

- Clopidogrel: ARD 0%
 - P=0.74

- Prasugrel: ARD 0%

ICH

- Clopidogrel: ARD 0%
 - P=0.74

- Prasugrel: ARD 0%

Wiviott SD et al. NEJM 2007
Net Clinical Benefit
Death, MI, Stroke, Major Bleed (non CABG)

![Graph showing comparison between Clopidogrel and Prasugrel](graph.png)

Clopidogrel
- ITT = 13,608
- HR 0.87
- P = 0.004

Prasugrel
- HR 13.9
- 12.2
- P = 0.64

Events per 1000 pts
- MI: Clop -3.2%, Pras -3.0%
- Major Bleed (non CABG): P = 0.64

All Cause Mortality
- Clop 3.2%
- Pras 3.0%

Inset
- MI: Clop -23, Pras +6
- Major Bleed (non CABG): Clop -23, Pras +2

Wiviott SD et al. NEJM 2007
CV Death, MI, Stroke
Major Subgroups

Reduction in risk (%)

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Prasugrel Better</th>
<th>Clopidogrel Better</th>
</tr>
</thead>
<tbody>
<tr>
<td>UA/NSTEMI</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>STEMI</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>Male</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>Female</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td><65</td>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td>65-74</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>≥75</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>No DM</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>DM</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>BMS</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>DES</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>GPI</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>No GPI</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>CrCl < 60</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>CrCl ≥ 60</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>OVERALL</td>
<td>19</td>
<td>P_{inter} = NS</td>
</tr>
</tbody>
</table>
Diabetic Subgroup

N=3146

CV Death / MI / Stroke

TIMI Major NonCABG Bleeds

Clopidogrel

Prasugrel

Endpoint (%)

Days

HR 0.70
P<0.001
NNT = 21

Wiviott SD et al. NEJM 2007
Net Clinical Benefit

Bleeding Risk Subgroups

Post-hoc analysis

Prior Stroke / TIA

Yes

No

Risk (%)

+54

P_{int} = 0.006

-16

Age

>=75

<75

Wgt

<60 kg

>=60 kg

Risk (%)

-1

P_{int} = 0.18

-16

+3

P_{int} = 0.36

-14

OVERALL

-13

Wiviott SD et al. NEJM 2007
Bleeding Risk Subgroups

Therapeutic Considerations

- Significant Net Clinical Benefit with Prasugrel 80%
- Reduced MD
 - Guided by PK
 - Age ≥ 75 or Wt < 60 kg
- Avoid Prasugrel
- Prior CVA/TIA

MD 10 mg

Wiviott SD et al. NEJM 2007
Conclusions

Higher IPA to Support PCI

Prasugrel 60 mg LD/10mg MD vs Clopidogrel 300 mg LD/75 mg MD

<table>
<thead>
<tr>
<th>Efficacy</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A significant reduction in:</td>
<td>Significant increase in serious bleeding</td>
</tr>
<tr>
<td>CV Death/MI/Stroke</td>
<td>(32% increase)</td>
</tr>
<tr>
<td>Stent Thrombosis</td>
<td>Avoid in pts with prior CVA/TIA</td>
</tr>
<tr>
<td>uTVR</td>
<td></td>
</tr>
<tr>
<td>MI</td>
<td></td>
</tr>
<tr>
<td>2. An early and sustained benefit</td>
<td></td>
</tr>
<tr>
<td>3. Across ACS spectrum</td>
<td></td>
</tr>
</tbody>
</table>

Net clinical benefit significantly favored Prasugrel

Optimization of Prasugrel maintenance dosing in a minority of patients may help improve the benefit: risk balance

Wiviott SD et al. NEJM 2007
Comparison with Higher Dose Clopidogrel

IPA (%; 20 µM ADP)

N=201 P<0.0001 for each

Prasugrel 60 mg

Clopidogrel 600 mg

Prasugrel studies in the pipeline

- **S.W.A.P.** – Phase II: Switching antiplatelet therapy (clopidogrel to prasugrel)
- **ACAPULCO** – Phase II: Prasugrel vs high dose clopidogrel in ACS/PCI
- **TRILOGY** – Phase III: Prasugrel vs clopidogrel in non-revascularized ACS
Novel ADP P2Y$_{12}$ receptor antagonist

Prasugrel

AZD6140

Cangrelor
AZD6140

- A non-thienopyridine, in the chemical class CPTP (CycloPentylTriazoloPyrimidine)

- First oral reversible ADP P2Y\textsubscript{12} receptor antagonist

- Direct acting via the P2Y\textsubscript{12} receptor - metabolism not required for activity

- More potent platelet inhibitor than clopidogrel
DISPERSE: Faster, Greater and More Consistent IPA with AZD6140 vs clopidogrel

AZD6140 (100 mg bd) vs Clopidogrel

Husted SE et al Eur Heart J 2006; 27: 1038-1047
DISPERSE2 Study Design

- DISPERSE2 was a double-blind, randomized study of AZD6140 compared with clopidogrel, both on a background of aspirin (75–100 mg od)
- 50% of patients in each AZD6140 arm received a loading dose of 270 mg
- In the clopidogrel arm, thienopyridine treatment-naïve patients received a 300-mg loading dose

DISPERSE-2: Final Inhibition of Platelet Aggregation (IPA) (Clopidogrel-Naïve Patients)

Day 1

- AZD6140 90 mg
- AZD6140 180 mg
- AZD6140 270 mg
- Clopidogrel 300 mg

Day 28

- AZD6140 90 mg
- AZD6140 180 mg
- AZD6140 270 mg
- Clopidogrel 300 mg

P<0.05 for both AZD6140 groups vs clopidogrel at 4 h on day 1 and for 180 mg on day 28 and for 90 mg at 0 and 12 h on day 28

DISPERSE2 Adjudicated Bleeding Rates (%)
Week 4 and Overall

- **Week 4**
 - **Minor bleeding**
 - AZD6140 90 mg bid N = 334: 9.6%
 - AZD6140 180 mg bid N = 323: 7.7%
 - Clopidogrel 75 mg qd N = 327: 8.0%

- **Major bleeding**
 - AZD6140 90 mg bid N = 334: 6.3%
 - AZD6140 180 mg bid N = 323: 5.3%
 - Clopidogrel 75 mg qd N = 327: 4.7%

- **Overall**
 - **Minor bleeding**
 - AZD6140 90 mg bid N = 334: 6.8%
 - AZD6140 180 mg bid N = 323: 5.8%
 - Clopidogrel 75 mg qd N = 327: 4.4%

 - **Major bleeding**
 - AZD6140 90 mg bid N = 334: 9.9%
 - AZD6140 180 mg bid N = 323: 9.0%
 - Clopidogrel 75 mg qd N = 327: 5.6%

- Adjudicated total bleeding rates were similar for all groups.
- No evidence of dose-response for major bleeds.

Minor bleeding without major bleeding

DISPERSE2
Cumulative adjudicated clinical end point of CV death/MI/stroke

- No significant differences found between the groups for clinical end points

DISPERSE2

Non-bleeding adverse events (%)

<table>
<thead>
<tr>
<th>Preferred term</th>
<th>AZD6140 90 mg bid n=334</th>
<th>AZD6140 180 mg bid n=323</th>
<th>Clopidogrel 75 mg qd n=327</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspnea</td>
<td>10.5</td>
<td>15.8</td>
<td>6.4</td>
</tr>
<tr>
<td>Chest pain</td>
<td>7.5</td>
<td>7.4</td>
<td>8.9</td>
</tr>
<tr>
<td>Headache</td>
<td>9.6</td>
<td>6.5</td>
<td>8.6</td>
</tr>
<tr>
<td>Nausea</td>
<td>6.6</td>
<td>6.5</td>
<td>3.4</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>4.8</td>
<td>3.1</td>
<td>2.8</td>
</tr>
<tr>
<td>Insomnia</td>
<td>5.4</td>
<td>4.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>3.0</td>
<td>7.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Hypotension</td>
<td>4.2</td>
<td>3.7</td>
<td>0.6</td>
</tr>
</tbody>
</table>

- Discontinuation rates due to adverse events were low and similar between the groups
 - 21 (6%), 23 (7%) and 19 (6%) discontinued in the AZD6140 90 mg bid, AZD6140 180 mg bid and clopidogrel 75 mg qd groups, respectively
Ventricular Pauses >2.5 Seconds in Context of Other Studies

- Study A: 3.2%
- Study B: 4.8%
- Clop: 4.4%
- AZD6140 90 mg: 5.6%
- AZD6140 180 mg: 9.9%

Clopidogrel-treated patients in 2 different early ACS trials

Patients from DISPERSE2
Primary endpoint: CVD/MI/stroke
Secondary endpoint: CVD/MI/stroke/revascularization with PCI; CVD/MI/stroke, severe recurrent ischemia

ASA = acetylsalicylic acid; bid = twice daily; CVD = cardiovascular disease; ld = loading dose; MI = myocardial infarction; NSTEMI = non-ST-segment elevation MI; qd = once daily; STEMI = ST-segment elevation MI; UA = unstable angina.

ClinicalTrials.gov Identifier: NCT00391872
Novel ADP P2Y$_{12}$ receptor antagonist

- Prasugrel
- AZD6140
- Cangrelor
Cangrelor (AR-C69931MX)

- **Parenteral** ADP-P2Y\textsubscript{12} receptor antagonist

- **ATP analogue**

- **Direct and Reversible** P2Y\textsubscript{12} inhibitor

- **More potent** than clopidogrel ~90% inhibition of platelet aggregation at 1 - 4 mcg/kg/min iv

- **Plasma half-life** of 5-9 min.; 20 min. for return to normal platelet function
Key Phase I result

Rapid reversal of dose-dependent effect

% Inhibition of Aggregation

+ placebo

+ aspirin/heparin/GTN

AR-C69931 (ng.kg\(^{-1}.min\(^{-1}\)) Stepped infusion period

Recovery period
Cangrelor with Clopidogrel

Cangrelor improves platelet inhibition in patients receiving chronic clopidogrel

% inhibition of aggregation response induced by ADP 10µM

Cangrelor + tPA in STEMI

ST Recovery

- TPA
- 931 lo
- 931 med
- 931 hi

Greenbaum et al. ACC 2002.
Phase II clinical data: Compared with Abciximab in PCI

Double-blind randomized trial performed in US

Incidence of events up to 7-days

Death, MI, revascularization

- Abciximab (N=94): 5.4%
- Cangrelor (N=105): 5.7%

Major bleed (TIMI criteria)

- Abciximab (N=94): 2.1%
- Cangrelor (N=105): 1.0%

AR-C69931MX report number SC931-5129 Part 2

Greenbaum et al. Am Heart J. 2006;151:689.e1-689.e10
CHAMPION-PCI

1:1 Double blind, double dummy

Placebo capsules (to match) + Cangrelor bolus (30µg/kg) & infusion (4µg/kg/hour) + Placebo bolus & infusion (to match)

PCI (with or without stent)

Index Procedure
Study drug infusion (for at least 2 hours or the duration of the procedure, whichever is longer)

Clopidogrel capsules (600mg) + Placebo capsules (to match)

Clopidogrel Maintenance (at physician discretion)

1º Endpoint: Death, MI, and uRevasc at 48 hours

2º Endpoints:
Death, MI, uRevasc at 30 days
Death at 6 months and 1 year
Subjects who require PCI
(with or without stent) excluding STEMI

1:1 randomization to two treatment groups
Double blind, placebo-controlled
All patients treated with usual care

Study drugs

Cangrelor
bolus (30 µg/kg) & infusion (4 µg/kg/min)

Placebo
bolus & infusion (to match)

Index procedure

Subjects who require PCI
Study drug infusion: for at least 2 hours or the duration of the procedure, whichever is longer

Immediately post procedure

Placebo capsules
to match

Clopidogrel capsules
(600 mg)

Immediately post-infusion

Clopidogrel capsules
(600 mg)

Placebo capsules
to match

Post-infusion treatment
Aspirin and clopidogrel maintenance dose per local practice

Endpoints

48 hours after randomization
• Primary efficacy endpoint: composite incidence of all-cause mortality, MI, and IDR
• Secondary efficacy: incidence of individual components, stroke & abrupt vessel closure
• Safety endpoints: hemorrhage and transfusion
• Safety: AEs/SAEs

Follow up
• All-cause mortality, MI, IDR at 30 days
• Secondary efficacy: incidence of components at 30 days
• All-cause mortality at 6 months (ascertained at 1 year) and 1 year
Will New P2Y_{12} Inhibitors Reduce Resistance?

<table>
<thead>
<tr>
<th></th>
<th>Prasugrel</th>
<th>Cangrelor</th>
<th>AZD6140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid onset</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>High level of inhibition</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Reversible</td>
<td>✗</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>No resistance</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
</tr>
</tbody>
</table>

More potent and less variability!!
Better Clinical Outcomes?!!
Platelet Stimuli

- GP IIb/IIIa integrin
- ADP
- Epinephrine
- Collagen
- Serotonin
- Shear rate
- Thrombin
- Thrombin
- Thrombin

Platelet Aggregation

- AA
- COX-1
- TxA$_2$
- TxA$_2$
- TxA$_2$

GP IIb/IIIa integrin
Thrombus Formation

Two key elements: **cellular** (platelets) and **plasmatic** (coagulation factors)
Platelet Receptors

- Thrombin
- ADP
- Thromboxane A2
- Collagen
- GP Ibα-IX-V
- P2Y-1
- P2Y-12
- PAR-1
- PAR-4

Platelet surface interactions:

- Anionic phospholipid surfaces
- GPIbα-IX-V
- GP IIb IIIa
- Fibrinogen

Platelet receptors:

- GPIa
- GP IIb
- GP IIIa
Activation of PAR1 by thrombin

Thrombin

PAR1

extracellular
plasma membrane

intracellular

LDPR
SFLRNP

PAR1

recognition

cleavage

LDPR
NRLLFS

+ G protein activation

S. R. Coughlin et al. Cell. 1991, 64, 1057
Oral Anti-PAR-1 receptors

Non-Urgent PCI or Cath possible PCI (All Receive Aspirin)
Randomization #1 — 3:1 SCH530348:Placebo (Single Loading Dose)
Sequential Groups: 1=10 mg; 2=20 mg; 3=40 mg, or Placebo

Cardiac Catheterization
Planned PCI (All Receive Clopidogrel and Antithrombin)

Randomization #2 1:1:1
Maintenance Therapy Once Daily for ~ 60 days
SCH 530348 Loading Dose → SCH 530348
Or Placebo Loading Dose → Placebo
SCH 530348

Safety: TIMI Major plus Minor Bleeding
Efficacy: Death/MACE

* Primary Evaluable Cohort

No PCI**
CABG
Medical Management
Quantify Postoperative Chest-Tube Drainage, Transfusions, and Re-exploration
Safety: TIMI Major plus Minor Bleeding

**Secondary Evaluable Cohort
PCI Cohort

TIMI Major/Minor Bleeding

- Placebo: 3.3% (n=151)
- All TRA: 2.8% (n=422)
- 10 mg: 1.6% (n=129)
- 20 mg: 2.5% (n=120)
- 40 mg: 4.0% (n=173)

p-value relative to placebo

p = 0.77
p = 0.35
p = 0.70
p = 0.73

SCH 530348
60-Day Death or MACE

Placebo: 8.6% (n=151)
All TRA: 5.9% (p = 0.26, n=422)
10 mg: 5.0% (p = 0.25, n=129)
20 mg: 4.6% (p = 0.15, n=120)
40 mg: 4.6% (n=173)

p-value relative to placebo

SCH 530348
PCI Cohort

Myocardial Infarction

- Placebo
- 10mg
- 20mg
- 40mg

$p = 0.52$
$p = 0.28$
$p = 0.12$

Days

0 1 2 3 4 5 6 7
Platelet Aggregation Substudy

Subjects with >80% IPA to 15 \(\mu \text{M} \) TRAP

<table>
<thead>
<tr>
<th>Time</th>
<th>Placebo n=23</th>
<th>10 mg n=15</th>
<th>20 mg n=18</th>
<th>40 mg n=33</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 minutes</td>
<td>0</td>
<td>6</td>
<td>53</td>
<td>68</td>
</tr>
<tr>
<td>60 minutes</td>
<td>0</td>
<td>46</td>
<td>53</td>
<td>82</td>
</tr>
<tr>
<td>90 minutes</td>
<td>21</td>
<td>43</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>120 minutes</td>
<td>43</td>
<td></td>
<td></td>
<td>96</td>
</tr>
</tbody>
</table>

SCH 530348

T·R·A·PCI
TRA (SCH 530348) Program

Evaluation of Efficacy and Safety in Acute and Chronic Atherothrombosis

NSTEACS
10,000 pts

2º Prevention
19,500 pts

F/U: 30 days, 4, 8, 12 months, and 6 months thereafter

F/U 1 yr minimum

1º EP: Composite of CV death, MI, Stroke, urgent revascularization and Recurrent Ischemia w/ Rehosp

1º EP: Composite of CV death, MI, Stroke, and urgent revascularization
to be continued !!!!!!!!!!