Systems Genetics to Uncover Novel Mechanisms in Heart Failure

Yibin Wang, PhD
Cardiovascular Research Laboratories
Molecular Biology Institute
Johnson Comprehensive Cancer Center
California Nano-Science Institute
UCLA

Heart Failure is a Complex Disease

Chronic Progression Over Time

Heart Failure is a Complex Disease

- -Hypertrophic CM
- -Dilated CM
- -Restrictive CM

Complexity of Heart Failure

Understanding Heart Failure as an Intact System

Grand Challenges in Heart Failure Research

Myocyte Hypertrophy, Death,
ECM, Transcriptome,
Metabolic,
Electro/physiological and
Vascular Remodeling

Grand Challenges in Heart Failure Research

Signaling Components

Diversity of signaling components:

Genes, Proteins, PTM, miRNA, lipids - - -

Dynamics of signaling interactions:

Proteins complexes, intracellular localization and traffic - - -

Interactions

Myocyte Hypertrophy, Death,
ECM, Transcriptome,
Metabolic,
Electro/physiological and
Vascular Remodeling

Non-linear interaction of different components

Quantitative properties vs qualitative outcomes

Molecule - Cell - Tissue - Organ
Scale of Complexity

Kinome vs. Phosphatome

Grand Challenges in Heart Failure Research

Signaling Components

Diversity of signaling components:

Genes, Proteins, PTM, miRNA, lipids - - -

Dynamics of signaling interactions:

Proteins complexes, intracellular localization and traffic - - -

Interactions

Myocyte Hypertrophy, Death,
ECM, Transcriptome,
Metabolic,
Electro/physiological and
Vascular Remodeling

Non-linear interaction of different components

Quantitative properties vs qualitative outcomes

Molecule - Cell - Tissue - Organ
Scale of Complexity

GWAS: From Genetic Variants to Disease Causal Genes

Limitations: False Positives, Lack of Mechanistic Content, Ineffective for Complex Traits

A Systems Approach for Complex Human Diseases

Systems + Genetics

From genetic variants to eQTL (Expression Quantitative Trait Locus)

Others:

<u>eQTLs</u> mRNA Expression <u>pQTLs</u> Protein Expression <u>mQTLs</u> Metabolic Profile

Systems Genetic to Uncover Gene Modules in Human Endothelial Cells

Lusis, Nature Review

Systems Genetics for Complex Diseases

Key to Success:

- 1). Stable but Diverse Genetic Population (large number of inbred strains)
- 2). High-resolution genotype mapping
- 3). Quantifiable clinical traits
- 4). High-throughput Omics: genomics, proteomics, metabolomics
- 5). Bioinformatics

ARTICLES

Variations in DNA elucidate molecular networks that cause disease

Yanqing Chen^{1*}, Jun Zhu^{1*}, Pek Yee Lum¹, Xia Yang¹, Shirly Pinto², Douglas J. MacNeil², Chunsheng Zhang¹, John Lamb¹, Stephen Edwards¹, Solveig K. Sieberts¹, Amy Leonardson¹, Lawrence W. Castellini³, Susanna Wang³, Marie-France Champy⁶, Bin Zhang¹, Valur Emilsson¹, Sudheer Doss³, Anatole Ghazalpour³, Steve Horvath⁴, Thomas A. Drake⁵, Aldons J. Lusis^{3,4} & Eric E. Schadt¹

C57BL6/J (B6) ApoE-/-

C3H/HeJ (C3H) ApoE-/-

Metabolic Profile

Macrophage Expression Metabolic Network

Hybrid Mouse Diversity Panel (HMDP)

~100 "classical" inbred and recombinant inbred strains

- Most strains fully sequenced
- ◆ ~ 11 million SNPs
- ◆ > 10,000 functional variants

Data collection:

Phenomic
Transcriptomic
Proteomic
Metabolomic

Fat mass (by NMR), n=8 males/group

100 different inbred strains

Whole genome association Systems genetics

Systems Approach for Complex Human Diseases

Basic Elements in Systems Genetics for Heart Failure

- HMDP animals and disease related injury (ISO minipump)
- 2. Robust high-throughput functional characterization (Echo)
- 3. High-throughput molecular/cellular analysis (Genomic Core)
- Unbiased bioinformatic analysis to establish causal genes and networks
- 5. Clinical Validation

β-AR Agonist model of heart failure

Potential Implications

Human Translation

- Disease causal genes and networks as diagnostic and therapeutic targets
- 2. Disease stratification and personalized medicine
- 3. Better therapeutic goals

Heart to Heart Thanks!

Lab Members

Current:

Vincent Ren, Hongmei Ruan, Jing Gao, Haiying Pu, William Foster, DeAnna Steiger, Erik Anderson, Jim Oheven, Chen Gao, Marlin Tourma, Zhihua Wang,

Past:

Gang Lu, Asuka Otta, John Stricher, Pu Liao, Brian Petrich, Scherise Mitchell, Manxiang Li, Monika Vainoriene, Meizi Zheng, Beth Rose, Tomoko Ochi

<u>UCLA</u>

Christoph Rau, Jessica Wang, Jake Lusis, Eleaza Eskin Harvey Herschman Hong Wu, Peipei Ping, Robb MacLelland, Enrico Stefani, Paavo Korge, James Weiss, Jaunian Chen Washington University, St Louis

Jeffery Saffize

Attila Kovacs

Debbie Learner

John Hopkins University, Baltimore

Dimitrios Georgakopouls

David A. Kass

University of Maryland, Baltimore

W. Jon Lederer

National Institute of Aging, Baltimore

Rui-Ping Xiao

Peace Chen

UC, San Diego

Ju Chen, Joan Heller Brown

Kenneth R. Chien

U of Cincinnati

Jeffery Molkentin

Litsa Kranias

Jeff Robbins