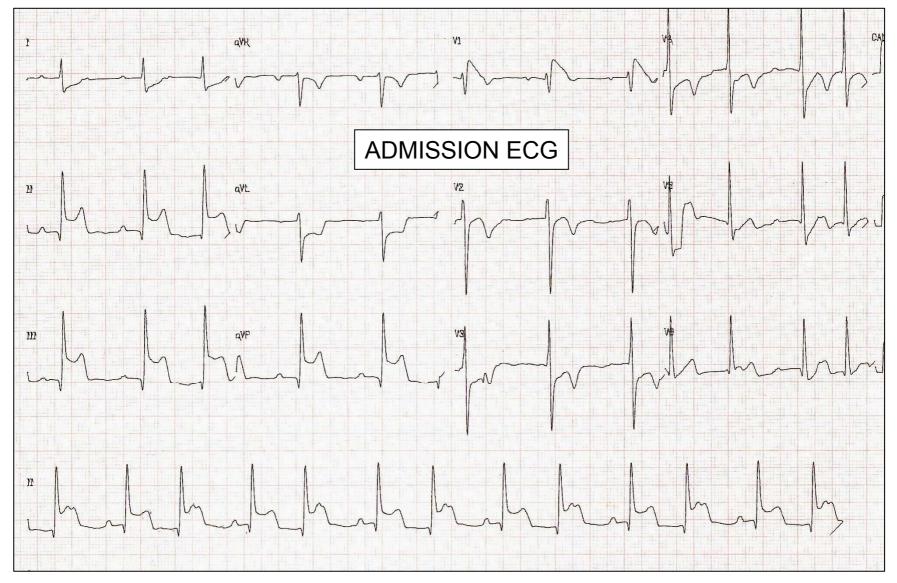
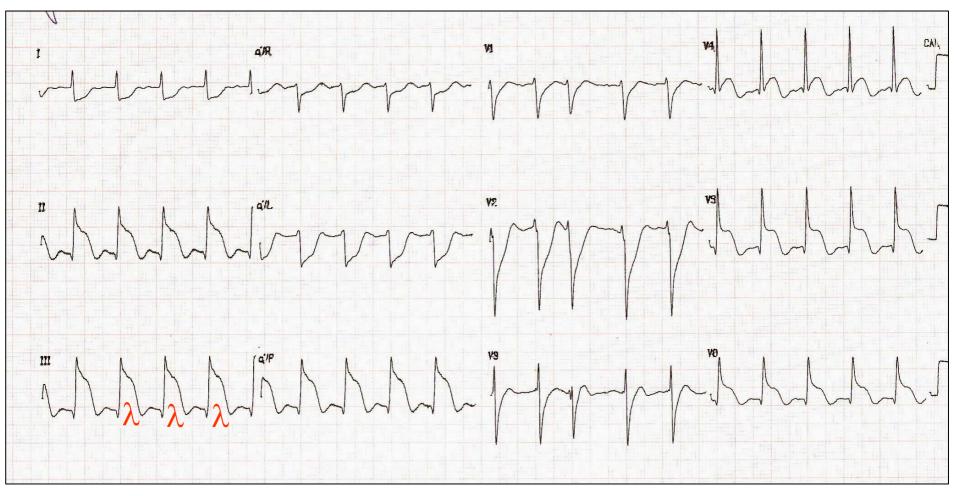
ACUTE INFERIOR MYOCARDIAL INFARCTION SECONDARY TO PROXIMAL OBSTRUCTION OF RIGHT CORONARY ARTERY MIMICKING TYPE 1 BRUGADA PATTERN AND ATYPICAL LAMDA-LIKE WAVE IN INFERIOR LEADS


ANDRÉS RICARDO PÉREZ RIERA, MD¹ & RAIMUNDO BARBOSA BARROS, MD²

1. Faculty of Medicine - ABC Foundation Santo André – São Paulo – Brazil.

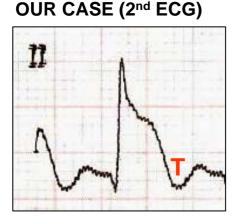
2. Ceará University. Brazil.


Case Report

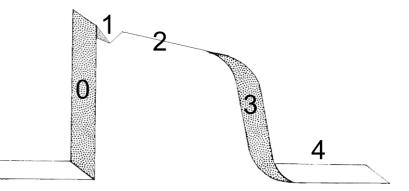
- Male, 64-year-old patient, who was admitted with symptoms of chest pain typical of acute coronary syndrome.
- ECG (admission) shows a pattern of inferior AMI with RV compromise (confirmed by V4R) + second degree AVB, type I. Associate typical type 1 Brugada pattern in V1 lead. As there was no hemodynamic room available, the patient underwent fibrinolytic therapy with streptokinase (1 hour infusion).
- ECG (post STK) shows a pattern resembling that of a variant of Brugada Syndrome or atypical Brugada pattern: "Lambda like wave" in inferior leads.
- Later, the patient underwent coronary angiography, which showed critical residual lesion of proximal RCA, which in turn was treated with STENT implant.

Right Coronary Artery occlusion proximal to the right ventricular side branches (=STsegment elevation in V1 Brugada like type 1ST-Segment elevation is a common ECG manifestation of acute transmural myocardial ischemia in leads facing the injury. Acute myocardial ischemia involving the RVOT of RV is known to induce a Brugada-like ECG pattern. Ito can modulate the ECG manifestation of acute ischemia as well as that of the Brugada syndrome, and that both clinical entities are the result of a similar electrophysiological substrate¹. ST segment elevation in inferior leads. Mirror image in I, VL, Type I second degree AV block.

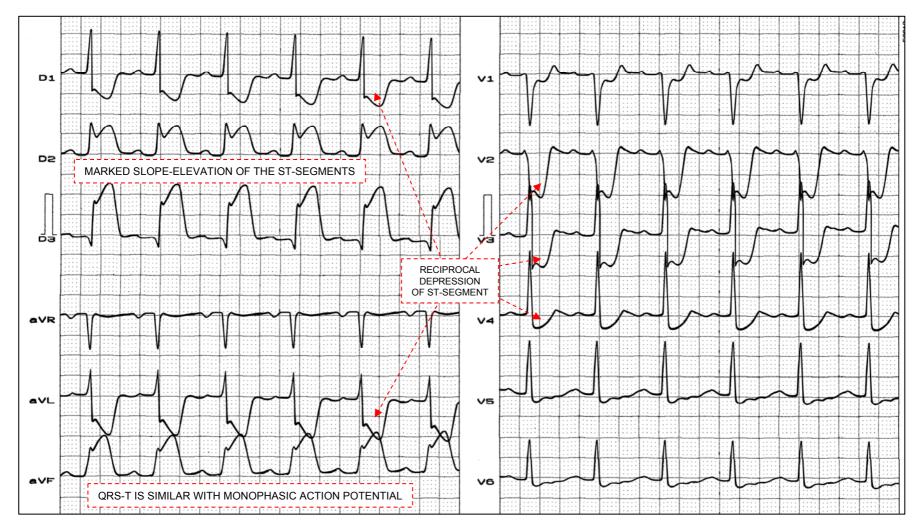
ECG POST-STREPTOKINASE


Characterization of proximal RCA occlusion in acute inferior MI

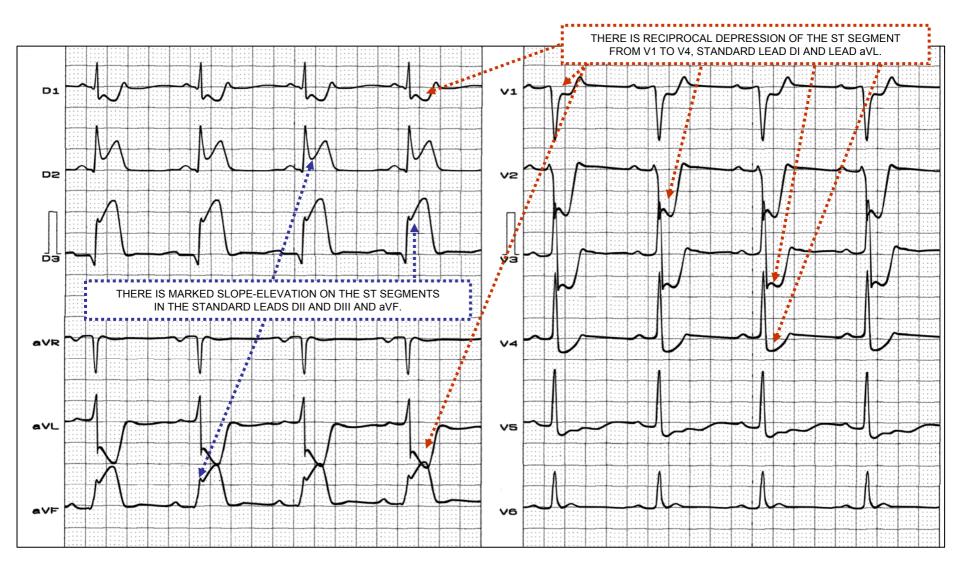
ST-segment depression in lead V1, The progress of the ischemic process like this, we consider the counteracting inferoposterior injury vectors to attenuate the ST-elevations caused by right ventricular involvement (=no ST elevation in V1). ST-segment depression in leads V1-V3, maximum ST-segment depression in the precordial leads, ST-segment depression in lead V3 of \leq 50% of the magnitude of ST-segment elevation in lead III, absence or minimal of ST-segment depression in lead V1 in combination with ST-segment depression in lead V2 and the arithmetic sum of the ST-segment: III + V3 > 1, more ST elevation in the lateral precordial leads. Severe progression of ischemia (grade 3). Lamda-like wave in inferolateral wall: High risk for ventricular fibrillation.


Nomenclature challenge

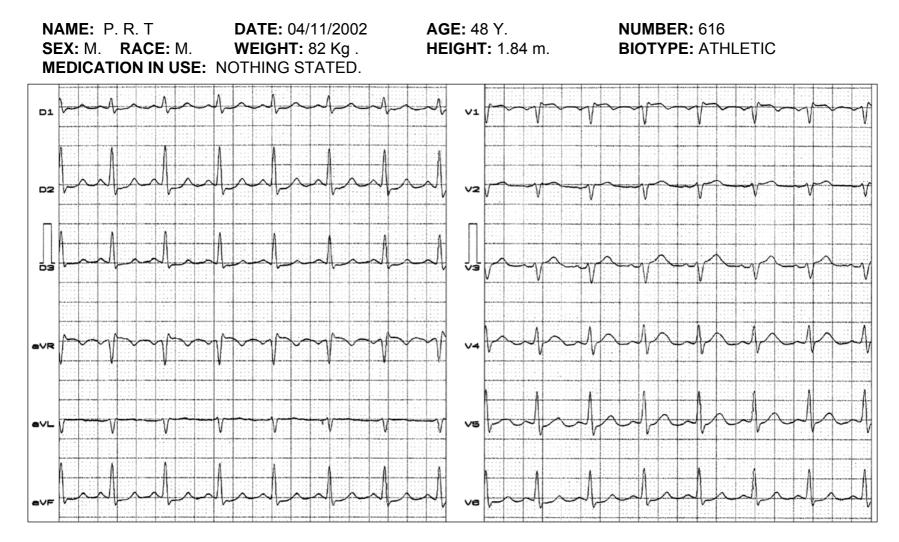
• **1920**


- Dr. Harold Pardee, from New York, publishes the first electrocardiogram of an acute myocardial infarction in a human and describes the T wave as being tall and "starts from a point well up on the descent of the R wave¹
- "The Pardee complex". This is observed also during the hyperacute early injury phase of MI (next slide). This complex looks like the monophasic action potential of rapid fibers.

MONOPHASIC ACTION POTENTIAL OF RAPID FIBERS

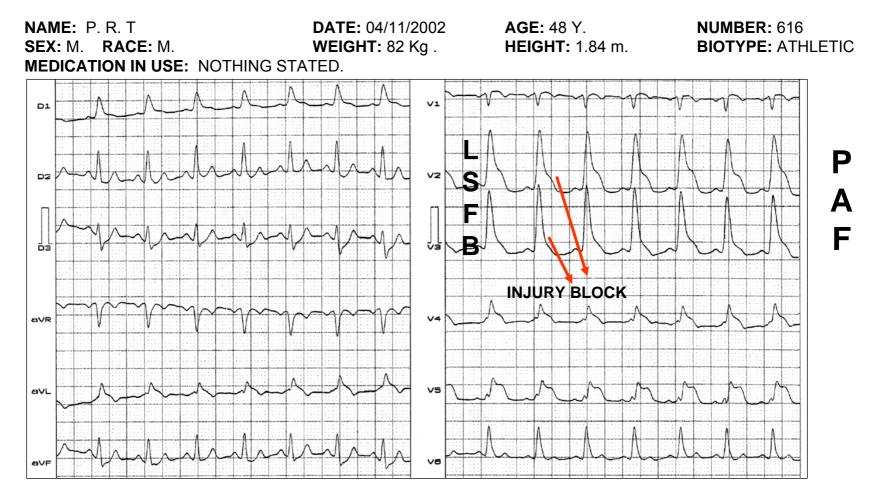


THE 'HYPERACUTE EARLY INJURY PHASE' IN INFERIOR MYOCARDIAL INFARCTION

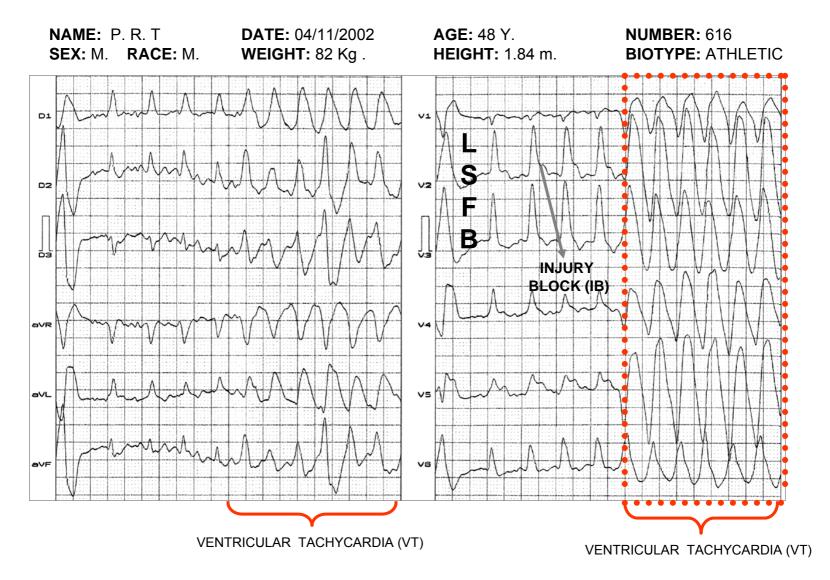

Man, 55 years old, 3 hours onset chest pain, first ECG in his home.

THE 'HYPERACUTE EARLY INJURY PHASE' IN INFERIOR MYOCARDIAL INFARCTION

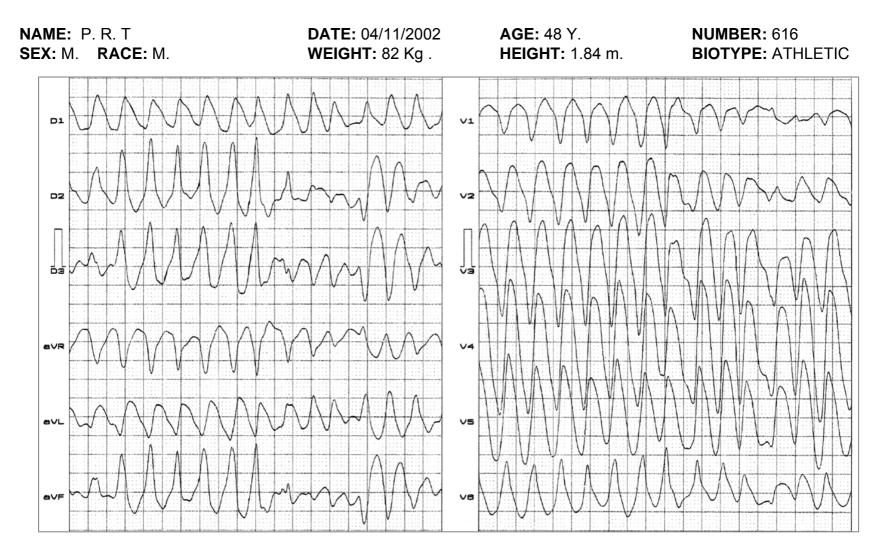
There is a increased in VAT with delay in the inscription of the ID (60ms in DIII and aVF).


ERGOMETER TEST: STAGE 1 ONSET OF STRAIN

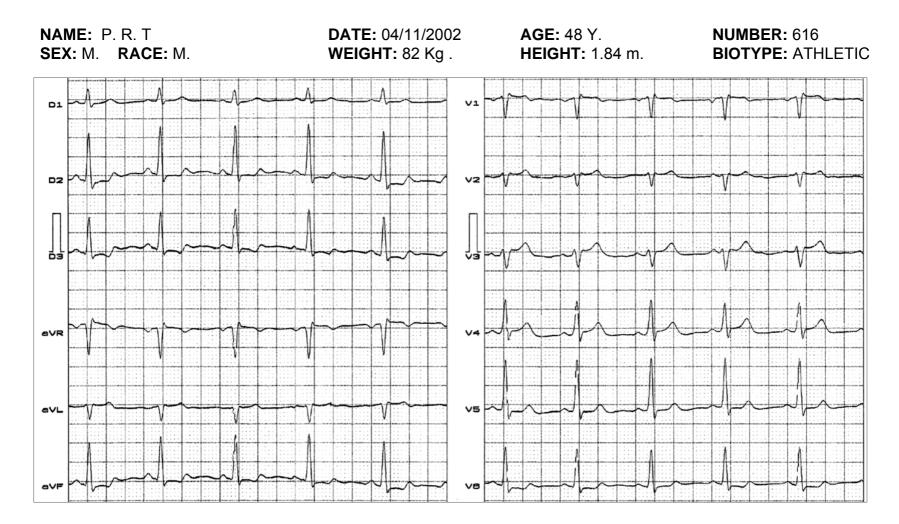
Clinical Diagnosis: angor pectoris of strain, inveterate smoker (30 cigarettes per day), stress. Absence of diabetes, high blood pressure, dyslipidaemias and others.


ECG diagnosis: tracing of onset of strain, HR 109 bpm, discrete end conduction delay by one of the RB fascicles: aVR and V_1 Qr.

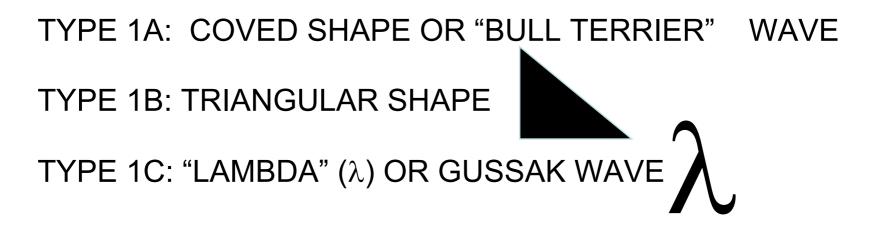
ERGOMETER TEST STAGE 2 INTRASTRAIN: INJURY BLOCK ASSOCIATED TO LSFB


In the second stage of the ergometer test, the typical pattern known as injury block (IB) appeared in the anterior wall, which is characterized by the distortion of the terminal portion of the QRS complex. This IB is characterized by the emergence of the J point at a level above the inferior half of the R wave, the disappearance of the S wave in leads with RS configuration, as in this case V_2 and V_3 . Besides, a significant increase of R wave voltage is observed in V_2 and V_3 prominent anterior forces (PAF), indicating the appearance of LSFB. The hemodynamic study revealed proximal critical injury of the ADA before the first septal perforating artery.

ERGOMETER TEST STAGE 3 INTRASTRAIN: LSFB + IB + VT


Tracing of a patient during the stress test, which shows LSFB in the sequence, with prominent anterior forces and injury block followed by a run of monomorphic sustained ventricular tachycardia, which disappears at recovery.

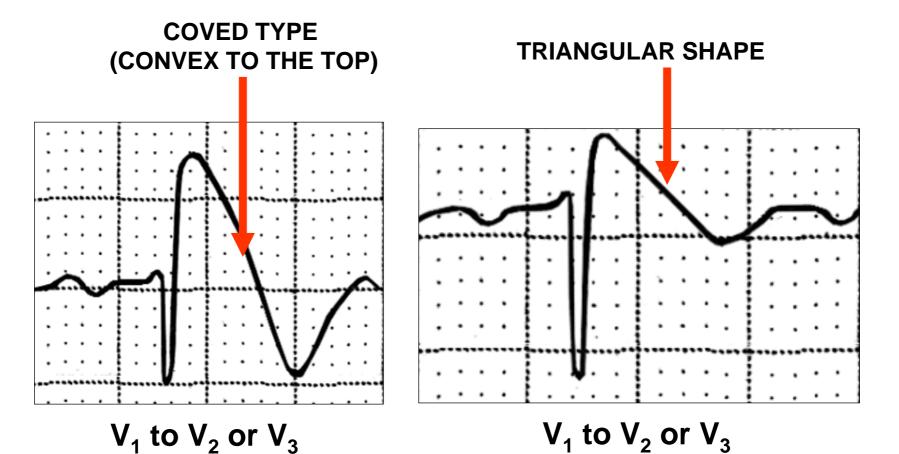
ERGOMETER TEST STAGE 4 INTRASTRAIN: VT


Tracing of a patient during the stress test, which shows LSFB in the sequence, with prominent anterior forces and injury block followed by a run of monomorphic sustained ventricular tachycardia, which disappears at recovery.

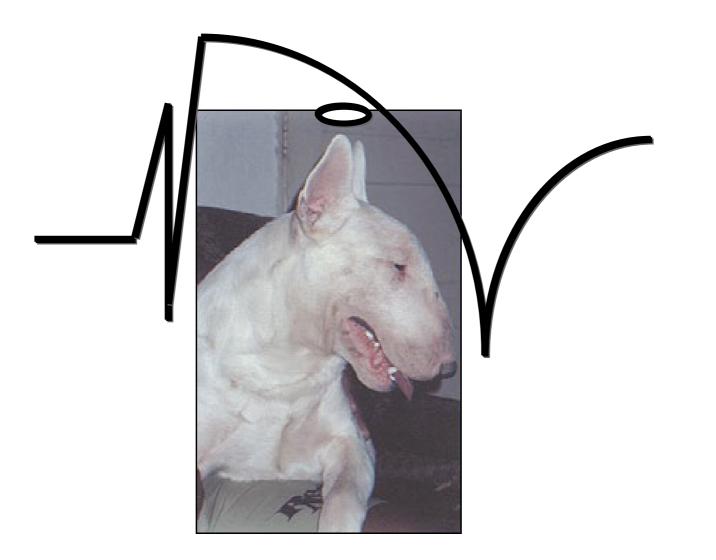
ERGOMETER TEST STAGE 5 2-MINUTE RECOVERY: NORMALIZATION, THE PAF BY LSFB AND THE VT DISAPPEARED

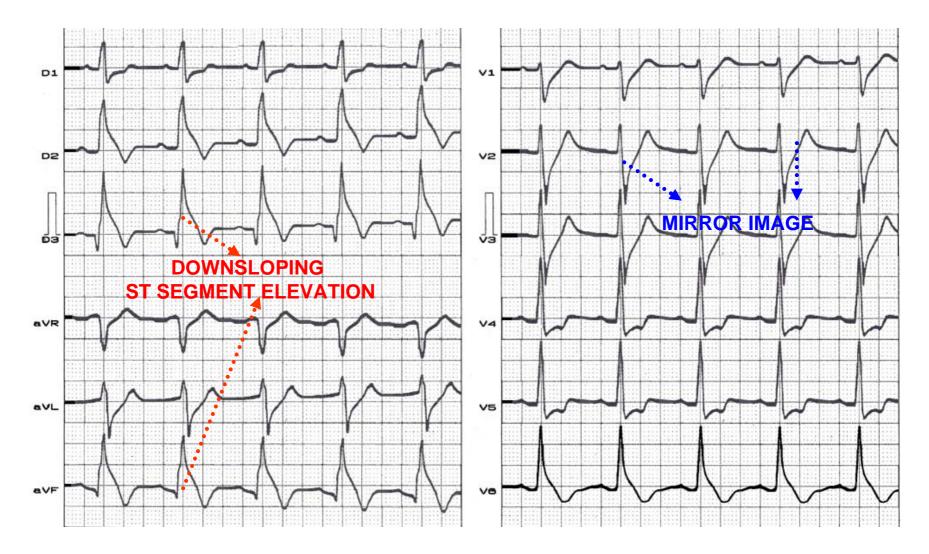
CONCLUSIONS: after 2 minutes of interruption of strain, the run of VT disappears (NS-VT), as well as the injury block (IB) and the prominent anterior forces (PAF) secondary to the left septal fascicular block (LSFB). This case reveals irrefutably, the intermittent form of LSFB. The phenomenon os intermittence has a great diagnostic value, since it rules out the possibility of other causes for the PAF.

PROPOSAL OF CLASSIFICATION OF TYPE 1 BRUGADA ECG PATTERN

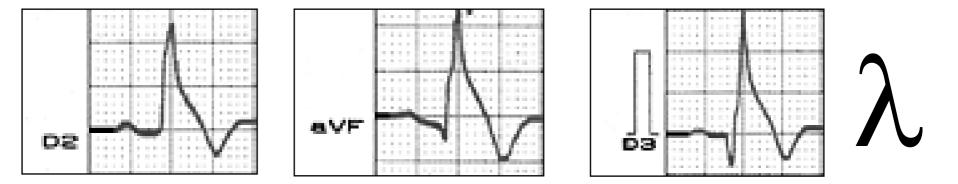


GREEK SMALL LETTER LAMBDA


PROPOSAL OF CLASSIFICATION OF TYPE 1 BRUGADA ECG PATTERN



"BULL TERRIER" OR TYPE 1A BRUGADA PATTERN CONVEX TO THE TOP

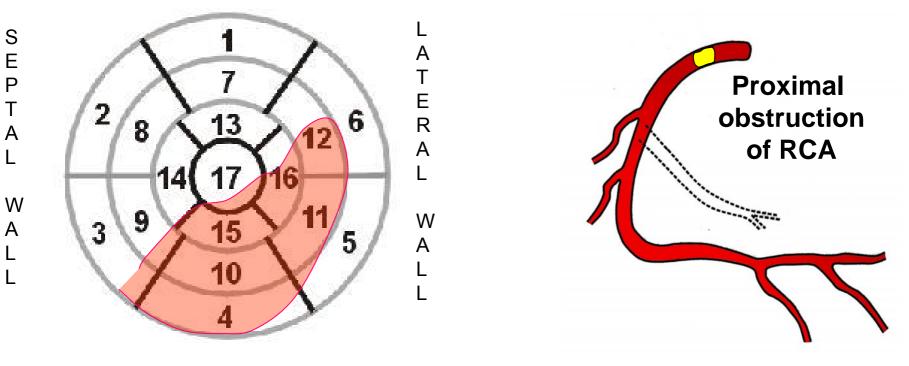


PROPOSAL OF CLASSIFICATION OF TYPE 1C BRUGADA ECG PATTERN

Riera AR, et al. J Electrocardiol 2004; 37:101-104. Kukla P, et al. Kardiol Pol. 2008;66:873-877

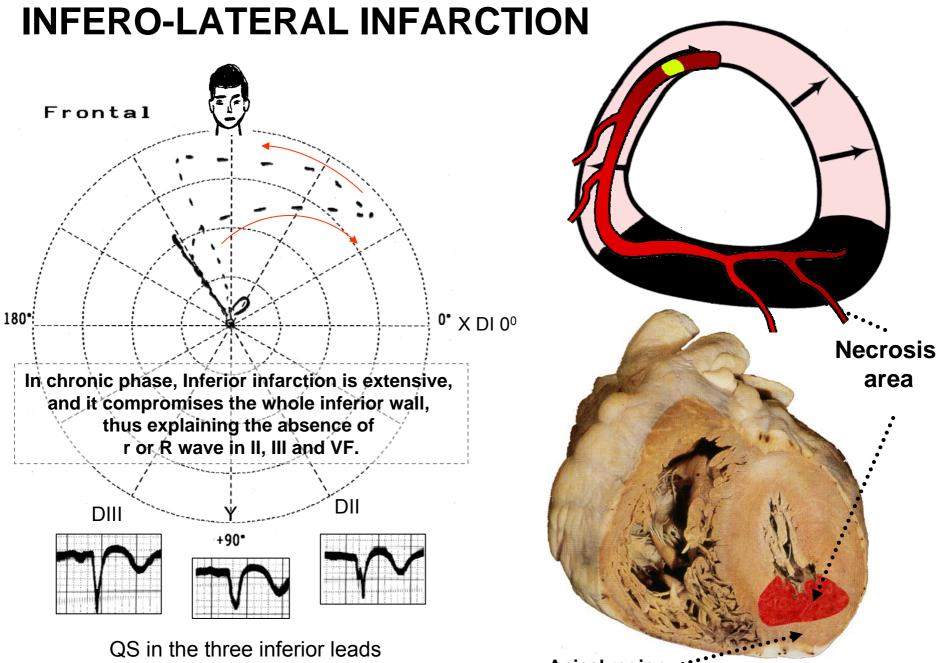
TYPE 1C WAS DENOMINATED "LAMBDA" WAVE BY GUSSAK I ET AL

Type 1C: ST-segment elevation is triangular or coved to the top ("coved type") ≥2mm (0.2mV), and followed by negative T wave located in inferior leads.


NEW ELECTROCARDIOGRAPHIC TERMINOLOGY FOR Q-WAVE INFARCTIONS BASED ON THE CORRELATION WITH CE-CMR

INFEROLATERAL ZONE

- Inferolateral
- **Type:** B-3
- **Most likely site of occlusion:** RCA or dominant LCx
- **ECG pattern:** signs of inferior (Q in II, II, VF: B2) and/or lateral infarction (RS in V_1).
- Segments compromised by infarction in CE-CMR: image in the next slide.
- **SE:** 73%.
- **SP:** 98%.
 - 1) Bayés de Luna A, et al.Am J Cardiol. 2006;97:443-451.
 - 2) Bayés de Luna A, et al. Circulation 2006; 114:1755-1760.
 - 3) Bayés de Luna A, et al. J Electrocardiol. 2006; 39 (4 Suppl):S79-81.
 - 4) Bayés de Luna A, et al. J Electrocardiol. 2007;40:69-71.
 - 5) Bayés de Luna A, et al. Ann Noninvasive Electrocardiol. 2007; 12:1-4.
 - 6) Bayés de Luna A, et al. Cardiology Journal 2007;14 : 417-419.
 - 7) Cino JM, et al. J Cardiovasc Magn Reson. 2006;8:335-44.
 - 8) Pons-Lladó G, et al. J Cardiovasc Magn Reson. 2006;8:325-6.


LATERAL INFARCTION B-3

ANTERIOR WALL

INFERIOR WALL

ECG pattern: signs of inferior (Q in II, II, VF: B2) and/or lateral infarction (RS in V1).

Apical region ···

ECG criteria for identifying patients with acute inferior MI (ISTEMI) caused by proximal obstruction of the RCA¹

- 1) ST-segment depression in lead V1
- 2) ST-segment depression in leads V1-V3
- 3) Maximum ST-segment depression in the precordial leads
- ST-segment depression in lead V3 of ≤ 50% of the magnitude of ST-segment elevation in lead III
- 5) The absence of ST-segment depression in lead V1 in combination with ST-segment depression in lead V2
- 6) The arithmetic sum of the ST-segment: III + V3 > 1.
- The arithmetic sum of the ST-elevation in V3/ST-elevation in III < 0.5

1) Styliadis I, Ziakas A, Karvounis H, Giannakoulas G, Efthimiadis GK, Parisiadou A, Anifanti M, Dalamanga E, Parcharidis G, Louridas GThe utility of the standard 12-lead electrocardiogram in the prediction of proximal right coronary artery occlusion in acute inferior myocardial infarction. J Emerg Med. 2008;35:67-72

Inferior wall acute myocardial infarction ECG characterization¹

- In inferior wall acute myocardial infarction patients with maximum ST depression in leads V4 to V6 more often had 3-vessel disease than those without precordial ST depression or those with ST depression in leads V1 to V3, and they had a lower EF.
- ST depression in leads V4 to V6, but not V1 to V3, confers a greater likelihood of multivessel coronary artery disease.
- Patients with maximum ST depression in leads V1 to V3 less often had AMIs due to proximal RCA obstruction than patients without precordial ST depression or those with ST depression in leads V4 to V6 and had larger AMIs as estimated by peak creatine kinase.
- Different patterns of precordial ST depression are associated with distinctive coronary anatomy.

1) Birnbaum Y, Wagner GS, Barbash GI, Gates K, Criger DA, Sclarovsky S, Siegel RJ, Granger CB, Reiner JS, Ross AM. Correlation of angiographic findings and right (V1 to V3) versus left (V4 to V6) precordial ST-segment depression in inferior wall acute myocardial infarction. Am J Cardiol. 1999;83:143-148.

Acute inferior myocardial infarction with right ventricular involvement¹

- The ST changes in acute inferior myocardial infarction (AIMI) give indications regarding the site, extension, and extent of AIMI.
- RV involvement can mask posterior extension, points to the right coronary as the culprit vessel (100%), and, with high probability, indicates the proximal segment as the site of the lesion.
- The ECG signs of isolated AIMI indicate a peripheral obstruction; and a collateral circulation may appear relatively early.

1) Correale E, Battista R, Martone A, Pietropaolo F, Ricciardiello V, DiGirolamo D, Barlera S, Maggioni AP.Electrocardiographic patterns in acute inferior myocardial infarction with and without right ventricle involvement: classification, diagnostic and prognostic value, masking effect. Clin Cardiol. 1999;22:37-44

Proximal RCA and LCx obstruction¹

- Significant ST segment depression (ST≥ 1 mm) in leads I and aVL is more common in RCA obstruction associated inferior wall MI with a sensitivity of 70% and 100%, and a specificity of 63% and 38%, respectively.
- The absence of significant ST segment depression in lead VL is most common in proximal left circumflex (LCx) obstruction, with a similar trend for lead I.
- ST segment depression patterns in leads V5 and V6 is not indicative of the infarct-related artery or the site of obstruction. The lack of ST segment depression in these leads indicates proximal LCx with a sensitivity of 71% and 86%, and a specificity of 65% and 100%, respectively.

1) Hasdai D, Birnbaum Y, Herz I, Sclarovsky S, Mazur A, Solodky A.ST segment depression in lateral limb leads in inferior wall acute myocardial infarction. Implications regarding the culprit artery and the site of obstruction. Eur Heart J. 1995;16:1549-1553

Clinical conditions mimicking STEMI in patients referred for primary PCI¹

- 1) Coronary aneurysm
- 2) Myo/pericarditis
- 3) Cardiomyopathy
- 4) Brugada syndrome
- 5) Aortic stenosis
- 6) Aortic dissection
- 7) Subarachnoidal haemorrhage
- 8) Pneumonia
- 9) Chronic obstructive pulmonary disease
- 10) Mediastinal tumour
- 11) Peritonitis after recent abdominal surgery.

 Gu YL, Svilaas T, van der Horst IC, Zijlstra F. Conditions mimicking acute ST-segment elevation myocardial infarction in patients referred for primary percutaneous coronary intervention. Neth Heart J. 2008;16:325-331

ACQUIRED FORMS OF THE BRUGADA SYNDROME; PSEUDO-ECG BRUGADA PATTERN OR PSEUDO BRUGADA PHENOTYPE¹

- Experimental studies have suggested that an intrinsically prominent transient outward current (Ito)-mediated action potential (AP) notch and a subsequent loss of AP dome in the epicardium, but not in the endocardium of the RVOT, give rise to a transmural voltage gradient, resulting in ST segment elevation in leads V1 - V3 and induction of subsequent VF due to the mechanism of phase 2 reentry.
- Because the maintenance of the AP dome is determined by the balance of currents active at the end of phase 1 of the AP, any interventions that increase outward currents (e.g. Ito, adenosine tri-phosphate sensitive potassium current [IK-ATP], slow and fast activating components of delayed rectifier potassium current [IKs, IKr]) or decrease inward currents (e.g. L-type calcium current [ICa-L], fast sodium current [INa]) at the end of phase 1 of the AP can accentuate or unmask ST segment elevation, similar to that found in Brugada syndrome.
- A number of drugs and conditions, which cause an outward shift in current active at the end of phase 1, have been reported to induce transient Brugada-like ST segment elevation. This is the so-called "acquired" form of Brugada syndrome similar to the "acquired" form of LQTS.

- Young ECG pattern¹
- Technical problem of inertia with the recording device²
- Acute phase of myocardial infarction³⁻⁴
- Acute myocardial ischemia⁵⁻⁶
- Dissecting aortic aneurysm⁷
- Acute pulmonary embolism⁸
- Hypothermia⁹

- 1) Rosso R, et al. J Am Coll Cardiol. 2008;52:1231-1238.
- 2) Rudiger A, et al. Am J Emerg Med. 2007;25:174-178.
- 3) Brugada J, et al. Circulation. 2002;105:73-78.
- 4) Priori SG, et al. Circulation. 2002; 105: 1342-1347.
- 5) Atarashi H, et al. Circ J. 2003;67:8-10.
- 6) Morita H, et al. Circ J. 2003; 67:312-316
- 7) Kanda M, et al. J Am Coll Cardiol. 2002;39:1799-1805
- 8) Eckardt L, et al. PACE. 2001;24:1423-1424
- 9) RuDusky BM. Am J Cardiol. 2004; 93:671-67

- Hyperkalemia¹⁻²
- Hypercalcemia³
- Left Ventricular Enlargement⁴
- LQTS 3 variant⁵
- Autologous peripheral blood stem cell transplantation for acute myeloid leukemia⁶
- Primary lung cancer⁷
- Anti-depressants overdose ⁸

- 1) Littmann L, et al. J Electrocardiol. 2007; 40:53-59.
- 2) Ansari E, et al. J Electrocardiol. 2003; 36: 257-260.
- 3) Wu LS, et al. Europace2007;9 :172-174.
- 4) Bathya B et al. J Assoc Physicians India. 2007; 55 Suppl:7-9
- 5) Shimizu W, et al. Curr Pharm Des. 2005;11:1561-72
- 6) Matsubara E, et al. Rinsho Ketsueki. 2004;45:481-483.
- 7) Kaneda Y, et al. Surg Today. 2001;31:817-819.
- 8) Akhtar M, et al. Electrocardiol. 2006;39:336-339.

- Pericarditis¹
- Duchenne-Erb paralysis or Duchenne muscular dystrophy²
- Friederich's ataxia²
- Acute Myocarditis³
- Myocardial involvement of hematologic diseases⁴.
- Arrhythmogenic right ventricular dysplasia⁵
- Cocaine intoxication: acute cocaine poisoning⁶
- Profound Electrolyte Disturbance induced by diabetic ketoasidosis⁷
- Epidural bupivacaine⁸
- Intraventricular conduction defects, RBBB LBBB⁹
- Severe hypothermia¹⁰.
- 1) Hermida JS, et al. J Electrocardiol. 2007; 40: 67
- 2) Antzelevitch C, et al. Heart Rhythm. 2005;2:429-440.
- 3) Satish OS, et al. Chang Gung Med J. 2005;28:69-76
- 4) Kim YH et al. Pacing Clin Electrophysiol. 2008;31:761-764.
- 5) Grigorov V, et al. Cardiovasc J S Afr. 2004; 15:139-142
- 6) Furushima H, et al Europace. 2007;9:951-956.
- 7) Kovacic JC, et al. Pacing Clin Electrophysiol. 2004; 27: 1020-1023
- 8) Phillips N, et al. Anesth Analg. 2003;97:264-267.
- 9) Bhatia V, et al J Assoc Physicians India. 2007;55:7-9
- 10) Bonnemier H. Circulation. 2008;118:977-978

- Hypothyroidism¹
- Central and autonomic nervous system abnormalities²
- Mediastinum tumor that compresses the RVOT³
- Thiamine Deficiency²
- Atypical early repolarization pattern⁴

- 1) Kitahara A, et al. Endocr J. 2008;55:589-594.
- 2) Corrado D. The Brugada Syndrome. From Bench to Bedside. Brugada syndrome: relationship to other arrhythmogenic syndromes. Chapter 8, pp 111-118.
- 3) Tarín N, et al. Pacing Clin Electrophysiol. 1999;22:1264-1266.
- 4) Riera AR, et al. Cardiol J. 2008;15:4-16.