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1. ¿Ahora, si tiene un bloqueo tetrafascicular, AV de 1° + BRD + LAFB + 
LSBF algo enfermedad estructural tiene?? 

Respuesta: actualmente no cabe duda que el síndrome de Brugada tiene enfermedad 
estructural mínima subyacente. 
A lo largo de los años, se ha propuesto que tanto la dispersión transmural mejorada en la 
repolarización como los disturbios de la despolarización con enlentecimiento de la 
conducción, en particular dentro del VD/ y en especial en el tracto de salida del VD 
(TSVD) mejor registrado en la odiosamente denominada “the forgotten lead” (aVR)  
la cual se posiciona al frente de esta estructura , son la base del patrón de ECG y la 
arritmogénesis en el SBr. Sin embargo, aunque originalmente se definió como un 
trastorno puramente eléctrico, las anomalías estructurales cardíacas ahora se consideran 
cada vez más relevantes.  
Aunque la ecocardiografía cardíaca convencional transtorácica a menudo muestra un 
corazón normal, se han observado anomalías sutiles mediante resonancia  nuclear 
magnética cardiaca  y  la tomografía computarizada, como:   

1) Dilatación del TSVD,  
2) Reducción de la fracción de eyección del VD y  
3) Anomalías en el movimiento de la pared del VD. Estas últimas pueden 

representar deformidades estructurales y/o el enlentecimiento de la conducción 
eléctrica con el consiguiente retraso de la contracción del miocardio.  

Los estudios de biopsia han encontrado alteraciones miocardiopatías sutiles en los 
pacientes Brugada (después de excluir displasia), además de mayor de fibrosis y 
expresión reducida de la proteína de unión comunicante conexina-43 en el VD/TSVD. 
Estos cambios estructurales tanto pueden ser causa como consecuencia de 
perturbaciones eléctricas y/o disfunción de los canales iónicos. Por ejemplo, un número 
reducido de canales de sodio puede afectar a otras proteínas (estructurales) que colocan 
y/o interactúan con el SCN5A NaV1.5 en la unión célula-célula (disco intercalado: 
“Gap junction”); lo que puede explicar el vínculo observado entre las mutaciones 
SCN5A y la displasia arritmgénica. Sin embargo, dado que la mayoría de los pacientes 
con BrS no tienen mutaciones SCN5A, con certeza está involucrados otros mecanismos 
aún desconocidos. Las anomalías estructurales podrían explicar la aparición de los 
síntomas de BrS en la mediana edad (entre 30 y 40 años), lo que indica que la patología 
subyacente necesita tiempo para desarrollarse. Por el contrario, las alteraciones 
eléctricas pueden ser las principales responsables de los síntomas de aparición precoz en 



bebés y niños con SBr, como sugiere la alta prevalencia de mutaciones en el gen  
SCN5A en esta faja de edad  como el caso presentado Independientemente de su origen, 
las anomalías estructurales pueden causar bloqueo de conducción como lo menciona 
Pedrito en su magnífico trabajo pionero donde comenta  la existencia  bloqueo en el  
haz de His  y hasta  “Split His”  y facilitar la reentrada arritmias.  
De hecho, la ablación con catéter del miocardio sobreviviente entre el tejido fibrocito 
puede eliminar este sustrato arritmogénico, borrando así el patrón electrocardiográfico 
de Brugada reduciendo así la carga arrítmica. 

2. Segunda pregunta de Juan ¿Puede ser Lenegre?    
Respuesta:  en ingles 

Both entities, called Progressive Cardiac Conduction Defects (PCCD), are grouped 
together as primary conduction diseases (Lev-Lenègre). Both Lenègre disease—
known as "primary" PCCD1 —as well as the secondary mechanic lesion—sclerosis 
of the left "cardiac skeleton” or Lev disease2  —usually cause LBBB or RBBB, 
frequently associated with divisional or fascicular blocks. Occasionally, they 
develop into more advanced degrees of block with a potential to cause SCD due to 
total AV block, to the extent that they represent the most important cause of  
pacemaker implantation in the first world: 0.15 per 1,000 inhabitants a year. The 
same mutation in novel single SCN5A missense mutation can lead either to 
Brugada syndrome or to a PCCD. Modifier gene(s) may influence the phenotypic 
consequences of a SCN5A mutation. A G-to-T mutation at position 4372 was 
identified by direct sequencing and was predicted to change a glycine for an 
arginine (G1406R) between the DIII-S5 and DIII-S6 domain of the Na+ channel 
protein3. 
DIFFERENCES BETWEEN LENÈGRE AND LEV DISEASE4 

LEV DISEASE LENÈGRE DISEASE



BRUGADA SYNDROME AND LENÈGRE DISEASE 

Tan et al5 identified a single mutation in five affected family members; this mutation 
results in the substitution of cysteine 514 for glycine (G514C) in the channel protein. 

Pathologic anatomy Mechanical progressive 
f ibros is of the le f t 
“ c a r d i a c s k e l e t o n . ” 
Calcif ication of the 
mitral valve ring, fibrous 
c e n t r a l b o d y , 
membranous part of the 
a o r t a b a s e , a p e x 
muscular septum, and 
direct Hisian system and 
a n t e r o - s u p e r i o r 
fasciculus of the left 
branch. 

Progressive sclerosis of the 
intraventricular His-Purkinje 
conduction system. 

Etiology Idiopathic. Mechanical 
acceleration of the aging 
process. 

Allelic heterozygotic mutation 
with Brugada syndrome located 
in the alpha subunit of the 
sodium channel in the SCN5A 
gene. 

I d e n t i f i e d g e n e t i c 
defect 

1) Substitution of the serine 
amino acid by glycine (G298S) 
in the domain of the I S5-S6 
loop. 
2) Substitution of asparagine by 
aspartic acid within the IV 
domain of S3 (D1595N). 
3) Substitution of 514 cysteine 
by glycine (G514C). 
4) Substitution of glycine by 
threonine in the 4372 position 
and g lyc ine by a rg in ine 
(G1405R) between the DIII-S5 
domains of the sodium channel. 



Biophysical characterization of the mutant channel shows that there are abnormalities in 
voltage-dependent 'gating' behaviour that can be partially corrected by dexamethasone, 
consistent with the salutary effects of glucocorticoids on the clinical phenotype. 
Computational analysis predicts that the gating defects of G514C selectively slow 
myocardial conduction, but do not provoke the rapid cardiac arrhythmias associated 
previously with SCN5A mutations. 
A two new allelic heterozygotic mutations with Brugada syndrome, located in the alpha 
subunit of the Na+ channel in the SCN5A gene, what has been clinically translated into 
AV block. They are the result of the substitution of the serine amino acid by glycine 
(G298S) in the domain of the I S5-S6 loop, and asparagine by aspartic acid within the 
S3 of the IV domain (D1595N). Both mutations prevent fast inactivation, reduce 
sodium channel density, and accentuate the slow component of inactivation. This 
combination causes a decrease in conduction velocity and leads to AV block.  
A mutation was identified, which causes intraventricular dromotropic disorder 
secondary to substitution of the cysteine amino acid by glycine (G514C) in the Na+ 
proteic fast channel6. In Brugada syndrome, the PR interval and the HV of the 
electrogram are prolonged in nearly 50% of cases. HV can reach a duration of 
approximately twice its maximal normal limit.Lenègre disease should not continue to be 
classified as an idiopathic progressive disease of the His-Purkinje system. It should be 
called a Progressive Cardiac Conduction Defect or PCCD. It has been identified as a 
disease of the Na+ fast channel or channelopathy by mutation in the SCN5A gene, and 
as allele of Brugada syndrome with a different phenotypic expression, in a similar 
fashion to the LQT3 variant of the hereditary-familial LQTS. The same missense 
mutation in the SCN5A gene can cause both phenotypes: Brugada disease and Lenègre 
disease7.  
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3. ¿Es diagnóstico inobjetable S° Brugada con SCN5A? Si  

Para eso debemos analizar la genética de este gen polivalente responsable por el 
Brugada tipo 1  con mutacion en el Gen: SCN5A 
Paso al English 
BrS types, locus, OMIM, gene, channels affected and percentage 

I. BrS-1 54: Locus: 3p21-23; OMIM: 601144; Gene: SCN5A; Ion channel and 
effect: INa+ loss-of-function; Protein: NaV1.5 - α subunit of the cardiac sodium 
channel carrying the sodium current INa+; % of probands: 11-28%. Amin et al 55 
hypothesized based on a study of AF in a large cohort of BrS patients, that a 
reduced number of potentially triggering premature atrial contractions (PACs) in 
the presence of a more extensive substrate in SCN5A mutation carriers may 
account for AF being no more prevalent in patients with SCN5A mutations than 
in those without. Given the polemic and complex issues underlying the 
pathophysiology of BrS, one should regard this hypothesis as one potential 
mechanism of many that influence the prevalence of AF in BrS. Mutations in 
SCN5A lead to a broad spectrum of phenotypes, however the SCN5A gene is 
not commonly involved in the pathogenesis of BrS and associated disorders. 
Studies have revealed significant overlap between aberrant rhythm phenotypes, 
and single mutations have been identified that evoke multiple rhythm disorders 
with common gating lesions. Nav1.5 consists of peak and late components (INa-
P and INa-L). Mutant Nav1.5 causes alterations in the peak and late Na+ current 
and is associated with an increasingly wide range of genetic arrhythmias. More 
than 400 mutations have been identified in the SCN5A gene. Although the 
mechanisms of SCN5A mutations leading to a variety of channelopaties can be 
classified according to the alteration of INa-P and INa-L as gain-of-function, 
loss-of-function and both, few researchers have summarized the mechanisms in 
this way 56. Gain-of-function mutations in SCN5A lead to more Na+ influx into 
cardiomyocytes through aberrant channel gating causing LQT3. Slowed or 
incomplete inactivation of the NaV1.5 channel results in an additional inward 
current, known as the late or persistent sodium current (Ipst), during the plateau 
phase of the ventricular action potential with ST segment prolongation and late 
T occurrence. Among the mutations in SCN5A associated with LQT3 is 
1795insD, which is characterized by the insertion of 3 nucleotides (TGA) at 
position 5537 C-terminal domain of the NaV1.5 protein 57. Carriers of this 
mutation may not only present with LQT3, but also with ECG features of sinus 



bradycardia, progressive cardiac conduction disease, and Brugada syndrome, 
thus creating the first described arrhythmic ‘overlap syndrome’ 58. Interestingly, 
1795insD is supposed to be a gain-of-function mutation in light of the QT 
prolongation, but a loss-of-function mutation in light of the sinus bradycardia, 
progressive cardiac conduction disease, and Brugada syndrome Additionally , 
and  multifocal ectopic premature Purkinje-related complexes; loss-of-function 
mutations in SCN5A result in amplitude reduction in peak Na+ current, further 
leading to channel protein dysfunction. i or cardiac conduction defect an entity 
with minor structural heart disease. In addition, both loss- and gain-of-function 
mutations may cause dilated cardiomyopathy and/or atrial fibrillation. 59. On 
ECG PR interval prolongation is the only parameter that predicted the presence 
of a SCN5A mutation in BrS, additionally, late potentials on high resolution 
ECG  LP were more frequently observed in SCN5A mutation carriers 60. SCN5A 
mutation is associated with an increased risk of drug-induced ventricular 
arrhythmia in patients without baseline type-1 ECG. In particular, Snon-
missense and Smissense-TP are at high risk 61. 

II. BrS-2 62: Locus: 12p13.3; OMIM: 911778; Gene: GPDIL; Ion channel and 
effect: INa+ loss-of-function; Protein: Glycerol-3phosphate dehydrogenase like 
peptide-reduced GPD1-L activity leads to phosphorylation of Nav1.5 and 
decreased INa+; % probands: Rare.  Defects in this gene are also a cause of 
sudden infant death syndrome (SIDS). SIDS is the SCD of an infant younger 
than 1 year that remains unexplained after a thorough case investigation, 
including performance of a complete autopsy, examination of the death scene, 
and review of clinical history. 

III. BrS-3 63: Locus: 12p13.3; OMIM: 114205; Gene: CACNA1C, Cav1.2; Ion 
channel and effect: ICa loss-of-function; Protein: e: Cav1.2- a-subunit of the 
voltage-gated calcium channel carrying the L-type calcium current ICa(L); % 
probands: 6.6%. Chromosomal location: 12p13.33, which is the short (p) arm of 
chromosome 12 at position 13.33. Shared with Timothy syndrome.  SN5A and 
CACNA1C: complex BrS 64.  

IV. BrS-4 63: Locus: 10p12.33; OMIM: 600003; Gene: CACNB2b, Cavβ2b; Ion 
channel and effect: ICa loss-of-function; Protein: Cavβ2B- β-2 subunit of the 
voltage-gated calcium channel carrying the L-type calcium current ICaL.(LTCC) 
regulates calcium entry into cardiomyocytes. CACNB2 (β2) LTCC auxiliary 
subunits traffic the pore-forming CACNA subunit to the membrane and 
modulate channel kinetics. β2 is a membrane associated guanylate kinase 
(MAGUK) protein. A major role of MAGUK proteins is to scaffold cellular 
junctions and multiprotein complexes. β2.1 may also function in the heart as a 



MAGUK scaffolding unit to maintain N-cadherin-based adherens junctions and 
heart tube integrity 65; % probands: 4.8%. 

V. BrS-5 66: Locus: 19q13,1; OMIM: 600235; Gene: SCN1B, Naβ1; Ion channel 
and effect: INa+ loss-of-function; Protein: Nav β  1- β  1 subunit of the sodium 
channel carrying the sodium current: INa+; % probands: 1.1%. Loss-of-function 
mutations in the β-subunits (encoded by C) have also been described for AF 67. # 
612838 A number sign (#) is used with this entry because of evidence that BrS-5 
and a nonspecific cardiac conduction defect are caused by heterozygous 
mutation in the SCN1B gene on chromosome 19q13,1. 

VI. BrS-6. 68: Locus: 11q13-14; OMIM: 604433; Gene: KCNE3, MiRP2; Ion 
channel and affect: Ito gain-of-function; Protein: MiRP2- β  subunit to voltage 
potassium channels. Modulates the transient outward potassium current Ito; % 
probands: Rare. # 613119 A number sign (#) is used with this entry because of 
evidence that BrS-6 is caused by heterozygous mutation in the KCNE3 gene on 
chromosome 11q13. 

VII. BrS7 69: Locus: 11q23.3; OMIM: 6081214; Gene: SCN3B; Ion channel and 
affected: INa+ loss-of-function; Note: Navb-3 subunit of the cardiac sodium 
channel carrying the sodium current INa+; % probands: Rare. # 613120 A 
number sign (#) is used with this entry because of evidence that BrS-7and AF-16 
(18, 19) are caused by heterozygous mutation in the SCN3B gene on 
chromosome 11q24. BrS8: Locus: 12q11.23; OMIM: 600935; Gene: KCNJ8, 
Kir6.1; Ion channel and effect: Ik-ATP gain-of-function; Protein:  Kir6., carries 
the inward rectifier potassium current Ikr; % probands: 2%. # 613123A number 
sign (#) is used with this entry because of evidence that BrS-8 is caused by 
heterozygous mutation in the HCN4 gene on chromosome 15q24 70. 

VIII.BrS-8 is caused by heterozygous mutation in the HCN4 gene on chromosome 
15q24 70. Locus: 12q11.23; OMIM: 600935; Gene: KCNJ8, Kir6.1; Ion channel 
and effect: Ik-ATP gain-of-function; Protein:  Kir6., carries the inward rectifier 
potassium current Ikr; % probands: 2%. # 613123A number sign (#) is used with 
this entry because of evidence that BrS-8 is caused by heterozygous mutation in 
the HCN4 gene on chromosome 70. 

IX. BrS9: Locus: 7q21.11; OMIM: 114204; Gene: CACNA2D1, Ca, α2δ; Ion 
channel and effect: ICa loss-of-function; Protein: α2δ  subunit of the voltage-
gated calcium channel carrying the L-type calcium current ICa(L); % probands: 
1.8%. Rare.# 616399 A number sign (#) is used with this entry because of 
evidence that BrS-9 is caused by heterozygous mutation in the KCND3 gene on 
chromosome 1p13 71. 



X. BrS10: Locus:1p13.2; OMIM:605411; Gene: KCND3, Kv4.3; Ion channel and 
effect: Ito gain-of-function; Protein: Kv4.3, a-subunit of the transient outward 
potassium channel Ito; % probands: Rare. The prominent role of the Ito in BrS 
pathogenesis, the rare gain-of-function mutations in KCND3 serve as a 
pathogenic substrate for BrS. Giudicessi et al provided the first molecular and 
functional evidence implicating novel KCND3 gain-of-function mutations in the 
pathogenesis and phenotypic expression of BrS, with the potential for a lethal 
arrhythmia being precipitated by a genetically enhanced I(to) current gradient 
within the right ventricle where KCND3 expression is the highest 71. 

XI. BrS11 72: Locus: 17p13.1; OMIM: 607954; Gene: RANGRF; Ion channel and 
effect: INa+ loss-of-function; Protein: Encodes MOG1 – influences trafficking 
of Nav 1.5. The protein MOG1 is a cofactor of the cardiac sodium channel, 
Nav1.5. Overexpression of MOG1 in Nav1.5-expressing cells increases sodium 
current markedly. Mutations in the genes encoding Nav1.5 and its accessory 
proteins have been associated with cardiac arrhythmias of significant clinical 
impact; % Probands: Rare 73. Olesen et al. screening of Nav1.5 cofactor MOG1 
uncovered a novel nonsense variant that appeared to be present at a higher 
frequency among patients than in control subjects.  

XII. BrS12 74: Locus: 3p21.2-2-p14.3; OMIM: 602701; Gene: SLMAP; Ion channel 
and effect: INa+ loss-of-function; Protein: Sarcolemma membrane-associated 
protein, a component of T-tubes and the sarcoplasmic reticulum – influences 
trafficking of Nav1.5; % Probands: Rare. T-tubules and sarcoplasmic reticulum 
are essential in excitation of cardiomyocytes, and sarcolemmal membrane-
associated protein (SLMAP) is a protein of unknown function localizing at T-
tubules and sarcoplasmic reticulum. The mutations in SLMAP may cause BrS 
via modulating the intracellular trafficking of hNav1.5 channel. 

XIII.BrS13: Locus 75: 12p12.1; OMIM: 601439; Gene: ABCC9 SUR2A; Ion channel 
and effect: Ik(ATP) gain-of-function; Protein: SUR2A, the adenosine 
triphosphate (ATP) binding cassette transporter of the Ik(ATP) channel.; % 
Probands: Rare. The ABCC9 is an ion channels/ion channel-related AF. 
Adenosine triphosphate (ATP)-sensitive potassium cardiac channels consist of 
inward-rectifying channel subunits Kir6.1 or Kir6.2 (encoded by KCNJ8 or 
KCNJ11) and the sulfonylurea receptor subunits SUR2A (encoded by ABCC9). 
KCNJ8 is a susceptibility gene for BrS and early repolarization syndrome (ERS 
and point to S422L as a possible hotspot mutation. The S422L-induced gain of 
function in ATP-sensitive potassium channel current is due to reduced sensitivity 
to intracellular ATP. ABCC9 has ERS and BrS susceptibility genes. A gain-of-
function in IK-ATP when coupled with a loss-of-function in SCN5A may 
underlie type 3 ERS, which is associated with a severe arrhythmic phenotype 76. 



XIV.BrS14 77: Locus: 11q23; OMIM: 601327; Gene: SCN2B, Navβ2; Ion channel 
and effect: INa+ loss-of-function; Protein: Navβ2-β -2subunit of the cardiac 
sodium channel carrying the sodium current INa; % Probands: Rare. Riuró et al. 
identified a novel missense mutation in the sodium β2 subunit encoded by 
SCN2B, in a woman diagnosed with BrS. They studied the sodium current from 
cells coexpressing Nav 1.5 and wild-type (β2WT) or mutant (β2D211G) β2 
subunits. Electrophysiological analysis showed a reduction in INa density when 
Nav 1.5 was coexpressed with β2D211G. Single channel analysis showed that 
the mutation did not affect the Nav 1.5 unitary channel conductance. Instead, 
protein membrane detection experiments suggested that β2D211G decreases 
Nav 1.5 cell surface expression. The effect of the mutant β2 subunit on the INa 
strongly suggests that SCN2B is a candidate gene associated with BrS. 

XV. BrS15: Locus: 12p11; OMIM: 602861; Gene: PKP2, Plakophillin-2; Ion channel 
and effect: INa+ loss-of-function; Protein: Plakophillin-2 – interacts with INa+; 
% probands: Rare. Plakophilin-2 (PKP2) variants could produce a BrS 
phenotype, which is the same allelic disorder as some sudden unexplained 
nocturnal death syndromes (SUNDS). All coding regions of PKP2 gene in 119 
SUNDS victims were genetically screened using PCR and direct Sanger 
sequencing methods. Three novel mutations (p.Ala159Thr, p.Val200Val, and 
p.Gly265Glu), one novel rare polymorphism (p.Thr723Thr), and 8 
polymorphisms were identified. A compound mutation (p.Ala159Thr and 
p.Gly265Glu) and a rare polymorphism (p.Thr723Thr) were found in one 
SUNDS case with absence of the apparent structural heart disease. The detected 
compound mutation identified in this first investigation of PKP2 genetic 
phenotype in SUNDS is regarded as the plausible genetic cause of this SUNDS 
case. The rare incidence of PKP2 mutation in SUNDS (1%) supports the 
previous viewpoint that SUNDS is most likely an allelic disorder as BrS 78. 
Mutations in proteins of the desmosome are associated with arrhythmogenic 
cardiomyopathy (AC). Life-threatening ventricular arrhythmias (VAs) often 
occur in the concealed forms/phase of the AC before the onset of structural 
changes. Evidence indicating that loss of desmosomal integrity (including 
mutations or loss of expression of plakophilin-2; PKP2) leads to reduced sodium 
current, the PKP2-INa relation could be partly consequent to the fact that PKP2 
facilitates proper trafficking of proteins to the intercalated disc, and, PKP2 
mutations can be present in XV patients diagnosed with BrS, thus supporting the 
previously proposed notion that AC and BrS are not two completely separate 
entities 79. Mutations on PKP2 account for the majority of AC cases, a disease 
characterized by high incidence of VAs and a progressive cardiomyopathy with 
fibrofatty infiltration involving predominantly the right ventricle. Although BrS 
was initially described as a purely electric condition in intact hearts, it is now 



recognized that structural changes occur mainly at the right ventricular outflow 
tract (RVOT) 80. These findings support the hypothesis, suggested in the past by 
some clinicians, that the two conditions could be at the bookends of a 
phenotypical common spectrum. PKP2 is a structural protein of the desmosome 
whose principal role is to maintain tissue integrity and cell-to-cell stability. 
However, data from cellular and mouse models demonstrated that loss of PKP2 
could facilitate arrhythmias by decreasing sodium current 81, thus through an 
electrophysiological effect. Indeed, in vitro characterization of the PKP2 
mutations detected in patients with a BrS phenotype showed a decreased sodium 
current, consistent with the clinical phenotype. Super-resolution microscopy 
data showed that loss of PKP2 could affect proper trafficking of the sodium 
channel at the membrane, thus supporting the concept that proteins could have 
accessory roles aside from the primary one ascribed to them. The role of the 
cardiac intercalated disc as a functional unit with both structural and electric 
regulatory functions has been opening new paths of investigations on the 
possible arrhythmogenic substrate in BrS 82. 

XVI.BrS-16: Locus: 3q28; OMIM: 601513; Gene: FGF12, FHAF1; Ion channel and 
effect: INa+ loss-of-function; Protein: Fibroblast growth factor homologues 
factor-1- mutation decreases INa+; Cytogenetic location: 3q28-q29; % 
Probands: Rare. Multilevel investigations strongly suggest that Q7R-FGF12 is a 
disease-associated BrS mutation. FHF effects on Na(+) and Ca(2+) channels are 
separable. Most significantly, the Hennessey study establishes a new method to 
analyze effects of human arrhythmogenic mutations on cardiac ionic currents. 
On the basis of the recent demonstration that FGF homologous factors (FHFs; 
FGF11-FGF14) regulate cardiac Na(+) and Ca(2+) channel currents, FHFs are 
candidate BrS loci 83. Mutation FGF12 also causes neonatal-onset epilepsy. 

XVII.BrS-17 84  Locus: 3p22.22; OMIM: 604427; Gene: SCN10A, Nav1.8; Ion 
channel and effect: INa+ loss-of-function; Protein: Nav1.8-αsubunit of the 
neural sodium channel.; % Probands: 16.7%. Hu et al identified SCN10A as a 
major susceptibility gene for BrS, thus greatly enhancing our ability to genotype 
and risk stratify probands and family members. The SCN10A SNP V1073 is 
strongly associated with BrS. Rare variants in the screened QRS-associated 
genes (including SCN10A) are not responsible for a significant proportion of 
SCN5A mutation negative BrS. The common SNP SCN10A V1073 was strongly 
associated with BrS and demonstrated loss of NaV1.8 function, as did rare 
variants in isolated patients 85. The expression of sodium channel Nav1.8 in 
cardiac nervous systems has been identified, and variants of SCN10A that 
encodes Nav1.8 contribute to the development of BrS by modifying the function 
of Nav1.5 or directly reducing the Na+ current. Fukuyama et al screened for the 



SCN10A gene using a high-resolution melting method and direct sequencing. 
and compared the clinical characteristics among the probands with gene 
mutations in SCN10A, 6 probands with CACNA1C and 17 probands with 
SCN5A. They identified six SCN10A variant carriers (2.5%): W189R, R844H 
(in two unrelated probands), N1328K, R1380Q, and R1863Q. Five were male. 
Four were symptomatic: one died following SCD age 35, one suffered 
ventricular fibrillation, and two had recurrent syncope. Compared with BrS 
patients carrying SCN5A or CACNA1C mutations, although there were no 
significant differences among them, symptomatic patients in the SCN10A group 
tended to be older than those in the other gene groups 86. 

XVIII.BrS-18 87: Locus: 6q; OMIM: 604674; Gene: HEY2 (transcriptional factor); 
Ion channel and effect: INa+ loss-of-function; Protein: Transcription factor 
identified in GWAS; % Probands: Rare. The association signals at SCN5A-
SCN10A demonstrate that genetic polymorphisms modulating cardiac 
conduction can also influence susceptibility to cardiac arrhythmia. The 
implication of association with HEY2, supported by new evidence that Hey2 
regulates cardiac electrical activity, shows that BrS may originate from altered 
transcriptional programming during cardiac development. 

XIX.BrS-19 88 Locus: 7p12.1; OMIM: 603961; Gene: SEMA3A, Semaphoring; Ion 
channel and effect: Ito gain-of-function; Protein: NaV1.5 - α subunit of the 
cardiac sodium channel carrying the sodium current INa; % of Probands: Rare. 
Boczek et al were the first to demonstrate SEMA3A as a naturally occurring 
protein that selectively inhibits Kv4.3 and SEMA3A as a possible BrS 
susceptibility gene through a Kv4.3 Ito gain-of-function mechanism 

Some mutations associated with BrS can also cause other heart conditions. 
Those who show more than one cardiac condition at the same time caused by a single 
mutation are described as having an overlap syndrome 89.  
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